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Abstract—Diabetic retinopathy (DR) is a leading cause of
blindness worldwide, requiring early detection to prevent severe
vision loss. This paper presents a deep learning-based approach
to automate DR detection using retinal fundus images. Advanced
convolutional neural networks (CNNs), including DenseNet121,
DenseNet201, DenseNet169, Xception, and VGG16, were fine-
tuned for hierarchical feature extraction. These features were
classified using Custom Classifier, Support Vector Machine
(SVM), XGBoost, and Random Forest. Evaluation metrics, in-
cluding Accuracy, Precision, Recall, F1-Score, and AUC, assessed
model performance. The DenseNet121 with a Custom Classifier
achieved the highest accuracy of 97.91% and an AUC of 99.28%,
highlighting its robustness. This study demonstrates the feasibil-
ity of deploying automated DR detection systems to improve
diagnostic efficiency, reduce dependency on skilled professionals,
and enhance healthcare accessibility globally.

Index Terms—diabetic retinopath, CNN, deep learning, SVM,
feature extraction.

I. INTRODUCTION

Diabetic retinopathy (DR) is a significant complication of
diabetes mellitus that affects the blood vessels in the retina,
which is the light-sensitive layer at the back of the eye. DR
is the leading cause of blindness among adults worldwide
and poses a severe public health challenge. As diabetes rates
continue to rise globally, the prevalence of DR is also in-
creasing, making early detection and intervention crucial to
prevent irreversible vision loss. Detecting DR at its early stages
can help mitigate severe outcomes, including blindness, by
enabling timely medical intervention such as laser treatments
or medication. Currently, diagnosing DR involves examining
retinal fundus images, which are images of the back of the
eye that provide visual evidence of retinal damage. However,
this process requires skilled ophthalmologists, and manual
detection is both time-consuming and prone to human error.
To address these challenges, automating the detection of DR
using advanced machine learning techniques, particularly deep
learning, has become a pressing necessity.
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II. RELATED WORK

The importance of automating DR detection is underscored
by several key statistics including global prevalence, impact
of vision, limited access to diagnosis etc. According to the
International Diabetes Federation (IDF), approximately 537
million adults were living with diabetes globally in 2021, a
number expected to rise to 783 million by 2045 [I]. The
World Health Organization (WHO) estimates that around 93
million people worldwide suffer from diabetic retinopathy,
with 28 million of these individuals facing vision-threatening
stages of the disease [2]. In many low-income regions, access
to healthcare professionals and advanced diagnostic tools is
limited. Reports indicate that only 50% of diabetic patients in
such regions undergo regular retinal screening [3].Recent ad-
vancements in deep learning(DL) have opened new pathways
for automated DR detection. A study presented a general deep
learning model for DR detection, demonstrating adaptability
across multiple datasets [4]. The authors in [6] introduced
explainable AI (XAI) using SHAP, which provided visual
explanations of DR detection results, while another researchers
[7] demonstrated the effectiveness of transfer learning with In-
ceptionV3 and DenseNet169, achieving an accuracy of 96.88%
on the APTOS 2019 dataset. In [8], they emphasized multi-
scale CNN architectures combined with data augmentation
to address challenges like class imbalance, improving model
robustness. Our research addresses these issues and provide
more accuracy than others.

A. Contribution

The contributions of this research are as follows:

o Development of an automated DR detection system
o Improvement in model accuracy
o Scalable and accessible healthcare solution.



III. METHODOLOGIES

Deep Learning (DL) and Machine Learning (ML) have
revolutionized medical image analysis by enabling computers
to learn patterns directly from raw data, thus eliminating
the need for manual feature extraction. These technologies
are particularly effective in the domain of medical image
processing, where large datasets with complex patterns are
common.

Machine learning (ML) allows systems to learn from data
for tasks like grouping, regression, and classification. In med-
ical applications, it is commonly utilized for picture catego-
rization and disease prediction [7]. Deep Learning (DL) is a
subset of machine learning which automatically learns features
using artificial neural networks. In terms of object detection
and image classification, DL method like Convolutional Neural
Networks (CNNs) are highly effective. CNNs improve di-
agnostic accuracy and speed for DR detection by detecting
minor indications from retinal fundus pictures [8]. For early
detection, this study uses CNNs to categorize fundus images
into groups that are healthy and those that are DR-affected.

The proposed methodology utilized pre-trained CNNs fine-
tuned for diabetic retinopathy detection to extract meaningful
features from retinal fundus images. DenseNetl121 was em-
ployed for its compact design and efficient feature propagation,
ensuring minimal redundancy in feature maps. DenseNet201
and DenseNet169, as deeper variants, enabled richer hierarchi-
cal feature extraction, capturing intricate patterns indicative
of DR. Xception, known for its use of depthwise separable
convolutions, provided computational efficiency while main-
taining high accuracy. VGG16, a widely adopted architecture,
contributed its proven reliability in image classification tasks,
ensuring robust performance across varied datasets. Follow-
ing feature extraction, several classifiers were employed to
categorize the images into healthy and DR-affected classes.
A Custom Classifier was specifically optimized to align with
the extracted features, enhancing detection performance. Addi-
tionally, ensemble techniques such as Support Vector Machine
(SVM), XGBoost, and Random Forest were incorporated
to further improve robustness and accuracy. To assess the
performance of the feature extractors and classifiers, a com-
prehensive set of evaluation metrics was employed. These
included Accuracy, which measures the overall correctness of
the model, Precision and Recall, which evaluate the model’s
ability to identify true positive cases without false positives
and false negatives, respectively, and the FI1-Score, which
provides a harmonic mean of precision and recall. Addition-
ally, the Area Under the Receiver Operating Characteristic
Curve (AUC) was calculated to assess the model’s ability to
distinguish between classes across various threshold levels.
These metrics provided a holistic view of the model’s effec-
tiveness in detecting diabetic retinopathy. The dataset used
in this research consists of retinal fundus images collected
from diabetic patients and healthy individuals. The images
have been labeled to indicate the presence or absence of DR,
and the dataset is divided into two classes shown in Table

I. The images in this dataset cover a wide range of cases,

TABLE 1
DATASET DETAILS

Dataset attribute
Class ’0’ (Healthy)
Class "1’ (DR)

Total images

Details

6266 images

1149 images

7415 images

from healthy retinas to different stages of DR, including early
and advanced stages. The class ’0’ (healthy) is the images
of healthy retinas, which show a clear, well-defined blood
vessel structure with no signs of abnormal growth or damage.
On the other hand, the class 1’ (DR) is the dataset, which
provides a valuable resource for training deep learning models
to recognize the subtle differences between healthy and DR-
affected retinal images.

IV. EXPERIMENTAL RESULT AND ANALYSIS
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TABLE II
PERFORMANCE METRICS OF FEATURE EXTRACTORS AND CLASSIFIERS

Feature Extractors | Classifier Accuracy Precision Recall F1 Score AUC
Class 0 Class1  Mac. AVG  Wtd AVG | Class 0 Class 1 Mac. AVG  Wtd AVG | Class 0 Class 1 Mac. AVG  Wtd AVG
VGG16 Custom Classifier 0.9359 0.9531  0.8293 0.8912 0.9339 09721 0.7391 0.8556 0.9359 09625  0.7816 0.8720 0.9344 0.9700
VGG16 SVM 0.9514 0.9581 0.9072 0.9327 0.9502 0.9856 0.7652 0.8754 0.9514 0.9797 0.8302 0.9009 0.9497 0.9758
VGG16 RF 0.9292 0.9395 0.8531 0.8963 0.9261 0.9792 0.6565 0.8179 0.9292 0.9590 0.7420 0.8505 0.9253 0.9524
VGGLl6 XGBoost 0.9488 0.9580 0.8889 0.9234 0.9473 0.9824 0.7652 0.8738 0.9488 0.9701 0.8224 0.8962 0.9472 0.9758
TABLE III
PERFORMANCE METRICS OF FEATURE EXTRACTORS AND CLASSIFIERS (DENSENET121)
Feature Extractors | Classifier Accuracy Precision Recall F1 Score AUC
Class 0 Class 1 Mac. AVG  Wtd AVG | Class 0 Class 1  Mac. AVG  Wtd AVG | Class 0 Class 1 Mac. AVG  Wtd AVG
DenseNet121 Custom Classifier 0.9791 0.9781 0.9854 0.9817 0.9792 0.9976 0.8783 0.9379 0.9791 0.9878 0.9287 0.9582 0.9786 0.9928
DenseNet121 SVM 0.9730 0.9794 0.9358 0.9576 0.9727 0.9888 0.8870 0.9379 0.9730 0.9841 0.9107 0.9474 0.9727 0.9865
DenseNet121 RF 0.9600 0.9400 0.8700 0.9100 0.9300 0.9800 0.6800 0.8300 0.9300 0.9600 0.7600 0.8600 0.9300 0.9721
DenseNet121 XGBoost 0.9600 0.9600 0.9200 0.9400 0.9600 0.9900 0.8000 0.9000 0.9600 0.9800 0.8600 0.9200 0.9600 0.9861
TABLE IV
PERFORMANCE METRICS OF DENSENET201 WITH CLASSIFIERS
Feature Extractor | Classifier Accuracy Precision Recall F1 Score AUC
Class 0 Class 1  Mac. AVG  Wtd AVG | Class 0 Class 1 Mac. AVG  Wtd AVG | Class 0 Class 1 Mac. AVG ~ Wtd AVG
DenseNet201 Custom Classifier 0.9622 0.9687 0.9223 0.9455 0.9615 0.9872 0.8261 0.9067 0.9622 0.9779 0.8716 0.9247 0.9614 0.9067
DenseNet201 SVM 0.9575 0.9656 0.9073 0.9364 0.9565 0.9848 0.8087 0.8968 0.9575 0.9751 0.8552 0.9151 0.9565 0.9843
DenseNet201 RF 0.9467 0.9600  0.8647 0.9124 0.9453 09777 0.7783 0.8780 0.9467 0.9688  0.8192 0.8940 0.9456 0.9781
DenseNet201 XGBoost 0.9609 0.9701 0.9057 0.9379 0.9601 0.9840 0.8348 0.9094 0.9609 0.9770 0.8688 0.9229 0.9602 0.9609
TABLE V
PERFORMANCE METRICS OF XCEPTION WITH CLASSIFIERS
Feature Extractor | Classifier Accuracy Precision Recall F1 Score AUC
Class 0 Class1 Mac. AVG Wtd AVG | Class 0 Class 1  Mac. AVG  Wtd AVG | Class 0 Class 1  Mac. AVG  Wtd AVG
Xception Custom Classifier 0.9508 0.9609 0.8867 0.9238 0.9494 0.9816 0.7826 0.8821 0.9508 0.9712 0.8314 0.9013 0.9495 0.9825
Xception SVM 0.9528 0.9568 0.9255 0.9411 0.9519 0.9888 0.7565 0.8727 0.9528 0.9725 0.8325 0.9025 0.9508 0.9812
Xception RF 0.9231 0.9311 0.8580 0.8946 0.9198 0.9816 0.6043 0.7930 0.9231 0.9557 0.7092 0.8324 0.9175 0.9591
Xception XGBoost 0.9535 0.9618 0.9005 0.9311 0.9523 0.9840 0.7870 0.8855 0.9535 0.9728 0.8399 0.9063 0.9522 0.9791
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The performance of various feature extractors and classifiers
was thoroughly evaluated to determine the most effective
combination for diabetic retinopathy detection. The results,
summarized in Tables II to VI, detail accuracy, precision,

Fig. 3.
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recall, F1-Score, and AUC for different configurations.

A. Performance of VGGI16 with Classifiers

Table II presents the results for the VGG16 feature extractor
paired with four classifiers: Custom Classifier, SVM, Random
Forest (RF), and XGBoost. Among these, the SVM classifier
achieved the highest accuracy of 95.14%, with a macro-
averaged precision of 93.27% and recall of 87.54%, indicating



TABLE VI
PERFORMANCE METRICS OF DENSENET169 WITH CLASSIFIERS

Feature Extractor | Classifier Accuracy Precision Recall F1 Score AUC
Class 0 Class1 Mac. AVG Wtd AVG | Class 0 Class 1 Mac. AVG  Wtd AVG | Class 0 Class 1  Mac. AVG  Wtd AVG
DenseNet169 Custom Classifier 0.9643 0.9644 0.9634 0.9639 0.9642 0.9944 0.8000 0.8972 0.9643 0.9792 0.8741 0.9266 0.9629 0.9853
DenseNet169 SVM 0.9548 0.9744  0.8498 0.9121 0.9551 0.9721 0.8609 0.9165 0.9548 09732 0.8553 0.9143 0.9549 0.9735
DenseNet169 RF 0.9508 0.9595  0.8945 0.9270 0.9494 09832  0.7739 0.8786 0.9508 09712 0.8298 0.9005 0.9493 0.9789
DenseNet169 XGBoost 0.9683 0.9741 0.9336 0.9539 0.9678 0.9888  0.8565 0.9227 0.9683 09814  0.8934 0.9374 0.9677 0.9848

effective utilization of features extracted by VGG16. The AUC
value of 97.58% further demonstrates its robustness.

Conversely, Random Forest exhibited relatively lower per-
formance, with an accuracy of 92.92% and macro-averaged
recall of 81.79%, suggesting that it may not fully capitalize
on VGG16’s feature extraction capabilities.

B. Performance of DenseNetl21 with Classifiers

Table III highlights DenseNet121 paired with classifiers. A
Custom Classifier achieved the highest accuracy of 97.91%,
with exceptional macro-averaged precision (98.17%), recall
(93.79%), and F1-Score (95.82%). The AUC of 99.28% under-
scores the model’s reliability in differentiating between healthy
and DR-affected retinal images.

The SVM classifier, with an accuracy of 97.30%, also
performed well, though it fell slightly behind the Custom
Classifier in precision and recall metrics. Both Random Forest
and XGBoost achieved accuracies of 96.00%, demonstrating
good, but not optimal, performance.

C. Performance of DenseNet201 with Classifiers

Table IV reports DenseNet201’s performance. The XGBoost
classifier achieved an accuracy of 96.09%, slightly outperform-
ing the Custom Classifier, which recorded 96.22%. The AUC
for XGBoost (96.09%) further validated its consistency across
metrics. The SVM classifier showed robust performance with
an accuracy of 95.75%, while Random Forest lagged slightly
behind, achieving 94.67%.

D. Performance of Xception with Classifiers

Table V demonstrates Xception’s effectiveness, with the
XGBoost classifier achieving the highest accuracy of 95.35%,
along with macro-averaged precision (93.11%) and recall
(88.55%). Custom Classifier and SVM also performed well,
with accuracies of 95.08% and 95.28%, respectively. However,
Random Forest exhibited lower scores, with an accuracy of
92.31%, indicating reduced adaptability to Xception’s ex-
tracted features.

E. Performance of DenseNetl69 with Classifiers

Table VI showcases DenseNet169 paired with classifiers.
The XGBoost classifier achieved the highest accuracy of
96.83%, along with a macro-averaged precision of 95.39%
and recall of 92.27%. The Custom Classifier closely followed
with an accuracy of 96.43% and similar metrics, showcasing
its efficacy in leveraging DenseNet169’s extracted features.
SVM and Random Forest recorded accuracies of 95.48%

and 95.08%, respectively, performing well but trailing behind
XGBoost and the Custom Classifier.

FE. Comparative Analysis

Across all experiments, DenseNet121 combined with a Cus-
tom Classifier emerged as the best-performing model, achiev-
ing the highest accuracy (97.91%) and AUC (99.28%). This
configuration demonstrated exceptional performance across all
evaluation metrics, emphasizing the importance of pairing
effective feature extractors with optimized classifiers. Addi-
tionally, DenseNet169 with XGBoost and DenseNet201 with
a Custom Classifier provided competitive results, highlighting
their potential for scalable deployment. In contrast, Random
Forest consistently exhibited comparatively lower metrics,
suggesting limitations in adapting to complex feature spaces.

V. CONCLUSION

This study demonstrates the potential of deep learning-based
methods in automating the detection of diabetic retinopathy
using retinal fundus images. The proposed methodology sys-
tematically integrates pre-trained CNNs and advanced classi-
fiers to achieve high accuracy and reliability in DR diagnosis.
DenseNet121 paired with a Custom Classifier emerged as
the most effective combination, achieving a peak accuracy of
97.91% and an AUC of 99.28%. Future work will focus on
real-time system deployment, integration with clinical work-
flows, and validation across larger and more diverse datasets.
The findings of this study pave the way for developing cost-
effective and accessible solutions to combat diabetic retinopa-
thy, ultimately improving patient outcomes and reducing the
global burden of vision-related complications.
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