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Abstract—EEG recordings are typically influenced by differ-
ent artifacts originating from non-neural sources, complicating
subsequent precise signal classification. The reliable detection
and removal of artifacts from EEG signals using an automated
signal processing technique is a prominent study domain. This
study presents a wavelet-based approach for the suppression of
artifacts in EEG data, which identifies ideal threshold values to
enhance artifact removal efficacy. In the suggested algorithm,
iterated over the threshold settings until optimal accuracy or
minimal distortion is attained, utilizing a reference dataset for
decision-making. The criteria for optimum selection rely on
matrices that measure the signal-to-noise ratio (SNR), mean
square error, and other factors. The technique is evaluated on a
genuine dataset of EEG signals containing ocular artifacts. The
results indicate a 16.93 dB enhancement in the SNR, confirming
that adaptively determining optimal threshold parameter values
yields superior performance compared to using any predefined
threshold parameters. This research will provide the EEG signal
analysis community with a platform to further investigate the
issue of selecting wavelet settings effectively.

Index Terms—electroencephalography(EEG), wavelet trans-
form (WT), wavelet thresholding, artifact suppression

I. INTRODUCTION

A powerful technique for detecting brain waves on the
scalp, electroencephalography (EEG) is frequently used in
brain-computer interfaces (BCls), to diagnose neurological
conditions like epilepsy, to monitor sleep, to investigate cog-
nitive processes, and to evaluate brain function when under
anesthesia [1]. Analysis is made more difficult by the fact that
EEG signals are susceptible to aberrations from sources such
as heart signals, muscular activity, and eye movements [2].
Simple filtering methods are useless because these artifacts
frequently overlap with brain signals in both the temporal and
frequency domains [3]. Understanding the various forms of
artifacts is necessary for effective artifact removal in clinical
and research settings. With the right setup, non-physiological
artifacts can be minimized, but complicated techniques are
required to remove physiological artifacts. The most prevalent
ocular artifacts that have a major impact on EEG signals are
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eye movements and blinks [4]. As a result, eliminating these
artifacts is essential for precise neuroscience research [2].

II. PROBLEM STATEMENT

Applications for EEG are numerous and include cognitive
research, neurological disease diagnostics, and brain-computer
interfaces. However, the quality and reliability of EEG data
are typically degraded due to aberrations originating from
eye movements, muscle activity, and other internal or exter-
nal sources. Simple filtering approaches are insufficient for
successful separation because these distortions overlap with
brain signals in both the temporal and frequency domains. The
ongoing objective is to improve the accuracy of EEG-based
research and applications by creating sophisticated algorithms
for artifact removal, particularly for typical ocular aberrations.
By examining and suggesting better techniques for EEG signal
artifact reduction, this research seeks to address this issue.

IIT. RELATED WORKS

Blind source separation (BSS) removes artifacts from EEG
signals by estimating an un-mixing matrix W to recover
original sources S = WX). Independent component anal-
ysis (ICA), which divides EEG into independent compo-
nents under the assumption of statistical independence among
sources, is one of the main BSS techniques. It functions well
with huge datasets and is efficient even in the absence of
reference signals. Although automated techniques and ICA
variants (such as FastICA, second-order blind identification
(SOBYI), and information maximization (InfoMax)) [5] enhance
performance, it necessitates manual artifact selection, which
introduces subjectivity. Since 1991, eye-related abnormalities
have been successfully detected using principal component
analysis (PCA), which converts correlated data into uncorre-
lated components [6]. However, when signal amplitudes are
similar, PCA’s effectiveness is limited by its orthogonality
assumption. Performance is enhanced by extensions such as
robust PCA [7]. When it comes to eliminating muscular
artifacts, canonical correlation analysis (CCA), which use



second-order statistics to identify correlations across datasets,
frequently outperforms ICA. Empirical mode decomposition
(EMD) provides improved artifact removal efficacy by adap-
tively breaking down signals into intrinsic mode functions
(IMFs) [8]. Finding extrema, creating envelopes, and iterating
until the signal residue is simple are all part of it. By using
thresholding and reconstruction, the wavelet transform (WT),
which breaks down EEG signals into time-frequency represen-
tations, effectively denoising signals. Despite WT’s resilience,
total artifact removal may be impeded by overlapping spectral
features between signals and artifacts [9].

IV. IMPACT OF ARTIFACTS IN EEG
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Figure 2. Artifactual EEG Signal

Artifacts in EEGs are electrical signals that are unwanted
and contaminate brain activity recordings, thereby substan-
tially influencing the accuracy and interpretation of the data.
Some of these anomalies are derived from physiological and
non-physiological sources. Physiological artifacts encompass
signals from cardiac functions, respiration, eye activity, and
muscle movements.

Non-physiological anomalies are the result of external inter-
ferences, such as environmental factors, electrode issues, and
device-related disturbances. In order to ensure the reliability
of EEG interpretation in clinical and research environments,
it is essential to accurately identify and minimize artifacts.
It is imperative to implement sophisticated preprocessing
and artifact-rejection algorithms to guarantee the validity of
neurological assessments and improve the quality of data.

V. METHODOLOGY
A. Dataset

The dataset utilized was obtained from EEGdenoiseNet,
specifically designed for motor imagery in BCI applications.
The dataset consists of 64-channel EEG recordings according
to the worldwide 10-10 standard, sampled at 512 Hz, including
both imagined and actual movements of the left and right
hands. The preprocessing procedures comprised band-pass
filtering (1 Hz to 80 Hz), notch filtering at the power line
frequency, and resampling to 256 Hz. Artifact mitigation was
performed via ICLabel and EEG data was divided into 2 s
epochs. An EOG dataset was acquired alongside the EEG
dataset from EEGdenoiseNet. The EOG signals comprised
horizontal and vertical components, which were band-pass

filtered between 0.3 Hz and 4 Hz and subsequently resampled
to 256 Hz. Like the EEG signals, the EOG signals were
divided into 2 s epochs.
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Figure 3. Block diagram of the proposed method

B. Stationary Wavelet Transform

The stationary wavelet transform (SWT) enhances the dis-
crete wavelet transform (DWT) by maintaining resolution
and spatial signal features across all scales, without down-
sampling. Wavelet transforms partition a signal into frequency
components (sub-bands) by employing low-pass and high-pass
filters to distinguish the signal’s low-frequency (approxima-
tion) and high-frequency (detail) components. Mathematically,
let x[n] be the input signal. The application of the low-pass
and high-pass filters in the first level of decomposition in SWT
can be represented as:

Aqln] = 2_: hlk]z[n — k], D1[n] = X_: glklz[n — k] (1)
k=0 k=0

where A;[n] and D[n] are the approximation and detail
coefficients at the first level, respectively, h[k] is the low-pass
filter, and g[k] is the high-pass filter.

C. Mother Wavelet

The Mother Wavelet produces wavelet functions for multi-
resolution signal analysis, encapsulating high-frequency de-



tails and low-frequency trends. The Mother Wavelet, typically
denoted as 1(t), is the function from which all wavelets in

the family are derived by scaling and translation. The general
form of a wavelet function is given by:

baslt) = (3% @

Where, 1(t) is the Mother Wavelet, 1| |

factor to ensure energy preservation in the wavelet transform,
a is the scaling factor (controls the width of the wavelet)
and b is the translation factor (controls the shift of the wavelet).

is the normalization

The Haar wavelet is effective for identifying sudden changes,
providing localized analysis with distinct transitions and lim-
ited support. Mathematically, the Haar wavelet ¢ (t) is defined
= 1 ifo<t<l
-1 if3<t<1
0  otherwise

D. Wavelet Thresholding

Wavelet thresholding methods are essential for artifact
reduction and signal restoration, especially in EEG signal
denoising using the SWT. This study focusses three primary
thresholding methods: hard thresholding, soft thresholding,
and the universal Donoho threshold.

1) Hard Thresholding: Hard thresholding employs a binary
rule, retaining wavelet coefficients dj, if |d;| > A and setting
others to zero: {

L =

Y(t) = 3)

di, if |dg| > A,

4
0, if |dg| <A @

This method retains substantial coefficients but causes dis-
continuities due to sudden coefficient elimination. In EEG
signals, severe thresholding may preserve residual artefacts if
high-frequency noise above the threshold, hence constraining
its efficacy. [10]

2) Soft Thresholding: Soft thresholding adopts a more
gradual approach by reducing all coefficients by the threshold
A and setting those below A to zero:

d = {sign(dk)(|dk| —N\), if [di| > A,

5
0, if |dy| < A ©)

This technique refines signal transitions and significantly
reduces artifact, rendering it especially appropriate for EEG
artifact suppression. [11]

3) Universal Donoho Threshold: The universal threshold,

defined as: Auniversal = 01/ 2log(n), (6)

where o is the noise standard deviation and n is the signal
length, is effective for Gaussian noise suppression. However, it
often over-smooths the signal, potentially losing critical EEG
features. [12] A modified threshold, incorporating a tunable
parameter k, is expressed as:

Amodified = K * Auniversal = K - 0 V 2 IOg(n)- @)

This adaptation balances noise suppression and signal preser-
vation.
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Figure 4. Flow chart of the proposed algorithm by threshold parameter
selection and optimization for artifact removal

1) Input Contaminated EEG Signal: The contaminated
EEG signal, X(t), is composed of a pure EEG signal
SEEG(t) and ocular artifact signal SEOG(t), repre-
sented A5t (1) — SEEG(t) + SEOG(t) ®)

2) SWT: The signal is decomposed using SWT into ap-
proximation coefficients (ACs) and detail coefficients
(DCs). For level J = 5, the decomposition is expressed
as:

Xt)=As+Ds+Ds+Ds+D+D1  (9)

where Aj captures low-frequency components and D1 —
D5 capture high-frequency components.

3) Thresholding approximation coefficients (Ka): The
threshold for ACs is defined as:

A =Ka-o04-+/2log(N) (10)

where Ka is a scaling factor and o4 is the standard
deviation of A;.

4) Thresholding detail coefficients (Kdj): Similarly, the
threshold for DCs is defined as:

Aigj = Kdj - 045 - \/21og(N) (11

with Kdj as a scaling factor and o4 the standard
deviation of d; at each level.

5) Threshold Parameter Optimization: The scaling fac-
tors Ka (ACs) and Kd; (DCs) were optimized via
systematic sweeps in [0, 1] using equation 10-11. Op-
timal values maximized the Signal-to-Artifact Ratio
(SAR) while preserving diagnostic EEG bands (al-
pha/beta/gamma) through spectral analysis.



6) Denoising via Hard Thresholding: Coefficients below
their respective thresholds are set to zero, reducing
artifact content. The thresholded coefficients are denoted
as él

7) Inverse SWT (ISWT): The signal is reconstructed by
applying ISWT to the thresholded coefficients, resulting
in a clean EEG signal:

Sppa(t) = AL+ DL+ Dy + D+ Dy + D (12)

where Af D; and are the thresholded approximation and
detail coefficients at each level.

8) Reconstructed EEG Signal: The final cleaned EEG
signal, Sk gc(t), is free from ocular artifacts and ready
for further analysis.

VI. RESULTS AND DISCUSSION
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Figure 5. Cleaned EEG Signal
The Haar wavelet in SWT was employed to optimize k,
(approximation coefficient) and ky (detail coefficient thresh-
old) for denoising, demonstrating their influence on cleaned
signal, SNR Improvement, and normalized mean squared error

(NMSE) across different input SNR levels.
TABLE 1
PERFORMANCE METRICS FOR DIFFERENT ADDED SNR LEVELS USING
HAAR WAVELET

Added Cleaned Signals SNR (dB) NMSE
SNR (dB) SNR (dB) Improvement

-10 6.93 16.93 0.0045

-7 7.66 14.66 0.0033

-5 7.22 12.22 0.0033

-3 8.02 11.02 0.0036

1 10.02 9.02 0.0012

3 11.24 8.24 0.0023

5 12.42 7.42 0.0016

This research introduces a method utilizing SWT for the
suppression of artifacts in EEG signals, specifically targeting
ocular disturbances such as eye blinks and movements. By
methodically optimizing the approximation coefficient (Ka)
and detail coefficients (Kd), this approach attains a SNR
enhancement of 16.93 dB, exceeding the 12.4 dB improvement
of the Wavelet-based Artifact Removal Algorithm and the
13.84 dB enhancement of the Hybrid Multi-Channel EEG
Filtering method, thereby illustrating superior EEG signal

quality. TABLE TI
COMPARISON OF IMPROVED SNR (DB) FOR DIFFERENT METHODS
Method Year | Improved
SNR (dB)
Wavelet-based Artifact Removal Algorithm [13] | 2020 124
Hybrid Multi-Channel EEG Filtering [14] 2022 13.84
Subband + SWT Method (This work) - 16.93

VII. CONCLUSIONS

This research investigates the application of the SWT for
the suppression of artifacts in EEG signals, providing a com-
putationally efficient solution. The algorithm incorporates an

improved thresholding technique that minimizes noise while
maintaining critical signal information, offering an effective
solution for artifact elimination. This method functions as
a feasible alternative for traditional methods such as ICA
and BSS, particularly in real-time applications due to its less
computational cost. However, the study encounters limitations,
including the absence of various EEG datasets, possible neu-
rones information loss, and dependency on manual parameter
optimization. It also did not explore comparisons with ad-
vanced methods such as deep learning models or real-time
clinical validation. Subsequent study would have to overcome
these deficiencies by employing deep learning techniques,
evaluating bigger datasets containing various artifacts, and
integrating hybrid models. Immediate execution and clinical
validation will be crucial for practical utility.
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