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Abstract—Bone fractures are one of the most prevalent con-
cerns in medical diagnostics but are often diagnosed on X-
ray imaging for detection. However, interpreting those X-ray
images can be susceptible to human error and affect treatment.
In that place, artificial intelligence (AI) is coming innovatively
to solve this challenge. Our study explores the approach of
incorporating the latest SOTA convolutional neural networks
(CNNs) for fracture detection using deep learning. We employed
pre-trained models such as DenseNet169, DenseNet121, VGG16,
VGG19, ResNet50 and ResNet101 trained on larger datasets to
extract high-level features from X-ray images. We used classifiers
such as Logistic Regression, Random Forest, XGBoost, and a
custom feed-forward network (FFN) to analyze these features.
Among multiple combinations tested, VGG16 combined with
the custom FFN produced the best results, reporting an overall
accuracy of 99.37%, Area Under the Curve (ROC-AUC) score
of 99.98%, precision of 99.37%, recall of 99.37%, and F1 score
of 99.37%. This strategy highlights the potential value of AI
technology in improving diagnostic accuracy, providing a fast,
reliable tool for medical professionals to use to improve patient
care.

Index Terms—Bone Fracture, Deep Learning, Transfer Learn-
ing, X-ray Image Classification

I. INTRODUCTION

Bone fractures are a common musculoskeletal injury affect-
ing millions of people worldwide each year. A bone fracture
describes the break or discontinuity in the bone structure, typi-
cally resulting in physical trauma, stress, or pathological states
such as osteoporosis. These fractures can be anything from a
hairline fracture to a break with severe involvement of other
structures [1] [2]. Fractures are classified into types according
to pattern, cause, and location. In 2019, 178 million incident
fractures were estimated to have been clinically recognized
globally, indicating an increase of 33.4% compared to 1990,
largely due to population growth and rising age. Of these cases,
102 million men (56.3 percent) and 76.4 million women (43.7

percent) [3] [4]. Fracture-induced chronic or acute symptoms
struck 455 million people in 2019, an alarming 70% increase
from 1990. Fractures of the lower leg bones (tibia and fibula)
were the most common, followed by the ulna, humerus, and
radius, with falls being the leading cause.

This study uses deep learning and convolutional networks
such as (DenseNet169, DenseNet121 [6], VGG16, VGGI19 [7],
ResNet50 and ResNet101 [8]) for fracture detection in X-rays,
highlighting each model’s strengths. It shows that combining
CNNs with classifiers improves diagnostic precision, demon-
strating the potential of Al to enhance medical expertise and
outcomes [5].

Magnetic resonance imaging, CT, or X-rays are the main
diagnostic tools for identifying fractures, whereas X-Rays are
the most commonly used because they are fast accessible. X-
ray has limitations in identifying small or complex fractures,
and additional imaging may be necessary for acomplete pic
ture.The analysis of X-ray images by humans is susceptible
to errors, especially in cases of compound or minor fractures.
Such manual means are limited and automated methods are
better suited to enhance diagnostic precision. Advancements
in Al and deep learning have shown great promise across
many domains, especially in medical imaging for fracture
detection. Deep neural networks excel at extracting intricate
patterns from visual data, and transfer learning per mits
customizing pre-trained models for specific applications. This
investigation leverages state-of-the-art convolutional networks
like DenseNet169, DenseNet121, VGG16, VGG19, ResNet50
and ResNetl01 to glean representations from X-rays, demon-
strating each architecture’s strengths: VGG is hierarchical,
ResNet embraces depth elegantly, DenseNet is compact and
efficient. A variety of classifiers then interpret the features,
proving simple models can capably classify fractures when
coupled with CNNs’ feature extraction. The study underlines



how joining deep learning and classification amplifies diag-
nostic precision, favoring doctors and patients. The findings
highlight data science’s potential to augment medical expertise
and outcomes.

II. LITERATURE REVIEW

Several promising machine learning and deep learning tech-
niques have been explored for automated identification and
differentiation of bone fractures. Numerous investigations aim
to enhance diagnostic precision while addressing the pitfalls
of manual evaluation. A. M. A et al. [11] applied customized
Xception model achieved an Fl-score of 85.07% and testing
accuracy of 85.13% on 42,000 X-rays, demonstrating efficient
and reliable performance in diagnosing bone abnormalities.
Karanam et al. [12] used advanced CNNs, achieving 94.58%
accuracy with InceptionResNetV?2 for classifying fractures into
types, demonstrating DL’s effectiveness. B. Senapati et al.
[13] applied Deep learning with CNNs has improved fracture
detection, achieving 98% accuracy and 96% F1-score using
a custom architecture with residual structures and transfer
learning for wrist fracture classification. Shyam Gupta et
al. [14] used The EfficientNet-B6 model achieved 96.83%
accuracy, 97.70% precision, 96.06% recall, and a 96.86%
Fl-score for bone fracture classification using the FracAtlas
dataset. Uma Devi et al. [16] applied meta-classifier was
proposed with MATLAB based meta-classifier using both
decision tree & neural network classifiers in which accuracy
was obtained 85.00%. Rinisha Bagaria et al. [17], the proposed
CNN-based fracture detection system achieved an accuracy of
approximately 90%, specificity of 89.87%, and an area under
the ROC curve of 0.8088, using 20 epochs. Soumi Ghosh
et al. [18], This study presents a deep learning model for
bone fracture detection with 97% accuracy and an F1 score of
98%, using heatmaps and performance graphs to aid healthcare
workers in India.

III. MATERIALS AND METHODS

In this section, the methodology of the current study is
described. A methodology diagram is provided in Fig. 1.

A. Data Collection and Analysis

“Bone Fracture Multi-Region X-ray Data”, a publicly avail-
able dataset that has been used in this work for our exper-
iments. The dataset contains a total of 10,580 radiographic
(X-ray) images that are classified into two classes, namely,
fractured and non-fractured. The number of examples in each
class is listed in Table I, and some examples from the dataset
are viewed in Fig. 2.

TABLE I: Number of Samples in Each Class

Class Data Sample
Fractured 4,640
Non-fractured 4,908

B. Data Preprocessing

The preprocessing steps involved resizing the image, apply-
ing CLAHE for contrast enhancement, and using a Laplacian
filter to sharpen the image.These steps in the preprocessing
pipeline are briefly described in this subsection and depicted
in Fig. 3.

The pipeline optimizes all images in the dataset, enhancing
them for extracting key characteristics.

C. Dataset Split

The photos were split into an 80-20 ratio, with 7,738 images
for training and 1,910 for testing, ensuring separate training
and test sets to prevent data leakage.

D. Feature Extraction

In this work, we have used several SOTA CNN models as
feature extractors. The CNN models, including DenseNet169,
DenseNet121, VGG16, VGG19, ResNet50 and ResNetl01
pretrained on the ImageNet dataset, have been incorporated
to extract discriminating features from the X-ray images.

E. Classification

5 different classifiers: Logistic Regression, Linear Regres-
sion, Random Forest, XG-Boost, custom FFN with a global
average pooling, 256-node dense layer with ReLU, batch
normalization, 30% dropout and sigmoid output were trained.
The custom FFN did the best, likely because it could detect
more complex patterns.

IV. RESULT AND ANALYSIS

We tried DenseNetl169, DenseNetl121, VGG16, VGGI19,
ResNet50 and ResNet101 as features extractors, and found that
features from VGG variants worked out best. For classification
we used Logistic Regression,Logistic Regression, Random
Forest, XGBoost, SVM and custom feed-forward network. We
saw that the VGG16 layed ahead of the other models but the
combination between VGG16 and the custom network was
reserved for our task. In the custom feed-forward network,
both the batch-normalization layer and the dropout layer pro-
vide regularization that contributes to preventing overfitting,
resulting in higher classification accuracy. This regularization
effect is evident from training vs. validation accuracy and
loss depicted in Fig. 4c. While training the classifier, we
have utilized adaptive learning rate by using the Adaptive
Moment Estimation (ADAM) optimizer. The effect of using
ADAM in training time is illustrated in Fig. 4b. Moreover, the
relationship between precision and recall is illustrated in Fig.
??. The aforementioned combination of VGGI16 and a cus-
tom feed-forward network achieves classification accuracy of
99.37%, whereas 99.37% of precision, 99.37% recall, 99.37%
F1-Score, and 99.98% ROC-AUC score. The ROC curve is
illustrated in Fig. 4a. Furthermore, the resulting confusion
matrix is illustrated in Fig. 5. Our experimental results are
scribed into Table II. Comparison of our work with previous
similar works is depicted in Table IIL.
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VGG16 XG-Boost 99.31 99.45 99.18 99.32 99.31 99.13 9949 9931 99.31 99.29 99.39 9931 99.31 99.96
Custom FFN 99.37 99.24 9948 99.36 99.37 99.46 99.28 99.37 99.37 99.35 99.38 99.37 99.37 99.98
Logistic 99.31 99.28 99.38 99.33 99.33 99.38 99.28 99.33 99.33 99.33  99.33 99.33  99.33 99.97
ResNet50 R e
egression
XG-Boost 99.31 99.45 98.18 99.32 99.31 98.13 99.49 9931 99.31 99.29 9933 9931 99.31 99.96
VGG19 Custom 99.26 99.24 99.28 99.26 99.26 99.24 99.28 99.26 99.26 99.24 9928 99.26 99.26 99.95
Linear Regres- 99.26 99.13 9938 99.26 99.26 99.35 99.18 99.26 99.26 99.24 99.28 99.26 99.26 99.83
ResNet101  sion
SVM 99.26 99.13 98.38 99.26 99.26 98.35 99.18 99.26 99.26 99.24 99.28 99.26 99.26 99.78
XG-Boost 99.16 99.24 98.08 99.16 99.16 98.03 99.28 99.15 99.16 99.13  99.18 99.16 99.16 99.98
DenseNet169 Linear Regres- 99.26 99.24 99.28 99.26 99.26 99.24 9928 99.26 99.26 99.24 99.28 99.26 99.26 99.71
sion
DenseNet121  Custom 99.21 99.35 99.08 99.21 99.21 99.03 99.38 99.21 99.21 99.19 99.23 99.21 99.21 99.98

Fig. 2: Sample Images From Dataset

TABLE III: Comparison with Other Works

Original Image

Fig. 3: Image Preprocessing Pipeline

V.L IMITATIONS AND FUTURE DIRECTIONS

While our approach surpasses previous works in classifica-
tion accuracy and performance metrics, it has some limitations.

A key challenge is the use of pre-trained frozen CNNs as fea-

Model # of Acc Pre Rec F1
Class (%) (%) (%) (%)
Xception [11] 2 85.13 8520 85.13  85.07
InceptionResNetV2 [12] 7 9458 9479  98.37  94.68
CNN Model [13] 2 98.0 96.0 99.0 96.0
WEFD-C Model [14] 2 96.83 9770  96.06  96.86
MATLAB-Based Meta- 2 85.0 76.9 100 70.0
Classifier [16]
CNN (Proposed) [17] 2 90.0 - 89.87  80.88
MATLAB-Based Meta- 2 97.0 - - 98.0
Classifier [18]
This work— VGG16 with 2 99.37  99.37  99.37  99.37

custom FFN
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ture extractors, which limits memory optimizations and may
cause issues in memory-constrained real-time applications.
Additionally, the model’s hyperparameters were not fine-tuned,
and the feature extractors retained their pre-trained values from
ImageNet instead of being adapted to our specific data. Future
work could involve training custom CNN models on our data
for memory efficiency and optimal hyperparameter tuning.

VI. CONCLUSION

In this study, we have explored fracture detection us-
ing deep learning with various feature extractors, including
DenseNet169, DenseNet121, VGG16, VGG19, ResNet50 and
ResNet101. All these SOTA CNN models were kept frozen
with parameters learnt from ImageNet dataset. The extracted
features are discriminated with much simpler classifiers,
namely, SVM, Logistic Regression, Random Forest, Linear
Regression, XG-Boost, and Custom feed-forward network.
Our experiments demonstrate that DenseNet169, when paired
with a custom feed-forward network, produces outstanding
performance metrices. We have achieved an impressive ac-
curacy of 99.37%, precision of 99.37%, recall of 99.37%,
an Fl-score of 99.37%, and an exceptional ROC-AUC score
of 99.99%. These results highlight the potential of using
transfer learning to achieve high classification accuracy in
bone fracture detection.
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