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Abstract— Breast cancer occurs when breast cells mutate and 
form tumors. While ultrasound imaging is a valuable tool for 
detecting and evaluating breast masses, its effectiveness is 
limited by operator dependency and a restricted field of view. 
In recent years, deep learning methods have been employed 
to address these limitations. Among them, Vision 
Transformer (ViT) models have emerged as a powerful 
approach for image classification, offering accurate and 
efficient results. This study leverages ViT to enhance breast 
cancer detection, ensuring reliable outcomes with reduced 
time requirements. In this paper, we presented tailored Vision 
Transformer based encoder model, to identify and effectively 
classify the benign, malignant and normal classes of image 
from Breast Ultrasound Images (BUSI) dataset. The 
proposed approach was compared to actual vision 
transformer model and it was found that our customized 
model performs better in every way. In our approach, we 
addressed class imbalance, ensuring fair evaluation across all 
classes in BUSI dataset. The results are measured with the 
performance metrics: accuracy, precision, recall and f1_score 
accordingly. The accuracy of the algorithm was obtained 
96.98%, with 97.96% precision, 95.46% recall and f1-score 
as 96.71% respectively. This proposed method would be 
much more time efficient as well as better than other 
classification algorithms for breast cancer prediction. 
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I. INTRODUCTION

Breast cancer is a leading cause of cancer-related deaths 
among women globally, with 670,000 fatalities and 2.3 
million diagnoses in 2022 [1]. Early detection is crucial to 
reduce mortality and expand treatment options. Ultrasound 
(US) imaging has become a preferred screening method due 
to its accessibility, cost-effectiveness, real-time imaging, and 
non-invasiveness. It is particularly effective in detecting 
lesions missed by mammography, especially in dense 
breasts. However, ultrasonography has limitations, such as 
difficulty identifying calcifications visible in mammography 
and some 

tumors [2]. Recent advances in automated breast cancer 
segmentation, classification, and detection using US imaging 
have shown immense potential [3]. Deep learning (DL), 
especially convolutional neural networks (CNNs), enhances 
image analysis but struggles with long-range information due 
to limited receptive fields [4]. 
Driven by the success of self-attention-based deep neural 
networks in natural language processing, Dosovitskiy et al. 
[5] introduced the Vision Transformer (ViT) architecture for
image classification. These models divided the input image
into patches, treated each embedded patch as a word in
natural language processing, and used self-attention modules
to figure out how these patches relate to one another [4].
Compared to CNNs, ViTs perform better on image
classification tasks because they include more global
information and stronger skip connections.
In this study, we propose a tailored Vision Transformer (ViT)
model designed for efficient and accurate classification on
breast ultrasound images dataset [3] while minimizing the
risk of overfitting.

Our primary contributions include, 
- Developed an automated ViT architecture capable of
classifying and detecting breast cancer stages with higher
accuracy than other ViT based works.
- To tackle the inherent class imbalance in breast ultrasound
datasets, we incorporated the Balanced Sparse Categorical
Accuracy metric ensuring robust performance across all
classes.
- An extra multilayer perceptron (MLP) leveraged the power
of transformer encoder to enhance detection accuracy while
significantly reducing the time and effort
required for diagnosis.

The rest of the paper is structured as follows, Section 2 
describes the literature related works, Section 3 describes the 
methodology used along with the parameters, Section 4 
describes result and analysis, and Section 5 concludes the 
proposed work. 



 

II. LITERATURE REVIEW 

Several methods for breast ultrasound (BUS) image 
segmentation have been explored, including traditional 
techniques like watershed transform [6], region growth [7], 
and active contour [8]. In recent years, deep learning (DL)-
based approaches have advanced BUS image classification 
[9]. CNNs have excelled due to their ability to learn semantic 
hierarchies. Xing et al. [10] utilized a CNN-GAN model for 
tumor segmentation, while Kumar et al. [11] proposed multi-
UNet for mass segmentation in BUS images. However, 
CNNs face challenges in retaining spatial and contextual 
information in deeper layers. Vision Transformer (ViT) [5] 
and hybrid models combining CNNs and Transformers have 
shown promise in addressing these limitations. A hybrid 
CNN-Transformer leveraging anatomical priors from BUS 
was applied in [12]. Despite progress, capturing global 
relationships and local patterns in BUS images remains 
challenging [3]. 
 

III. METHODOLOGY 

This section is about the total experiment with adequate 
results and further analysis. Our research aims for the research 
question that has been aroused, that how do we classify breast 
cancer with transformer models and how accurate it would be. 
To classify benign, malignant or normal breast cancer from 
images, we not only proposed a Vision Transformer 
architecture with proper parameters but also experimented 
with other parameters as well which has ensured a 
groundbreaking performance. We preprocessed image data 
and introduced a ViT architecture that outperforms others. 
Several deep learning models were implemented for 
performance comparison with the proposed ViT. 

A. Dataset 

For this research, the benchmark ultrasound dataset BUSI 
[3] was used to perform the image classification by 
customized Vision Transformer (ViT). Breast ultrasound 
images were collected in 2018 from 600 women aged 25–75, 
totaling 780 PNG images (500×500 pixels). Images, 
categorized as benign, malignant, or normal, include ground 
truth annotations in fig. 1. 
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Fig. 1. Labeled Breast Ultrasound Image Dataset [3] 

B. Preprocessing 

The dataset, comprising three classes, was preprocessed with 
normalization, balancing via Balanced Sparse Categorical 
Accuracy, grayscale conversion, and label encoding. 
Training images were resized to 128×128×3 for the ViT 
model. The datasets employed in this suggested methodology 
have been categorized as training and validation components, 
with the appropriate percentages being 80% and 20% 
consecutively. 

C. Proposed Approach 

ViT, enhanced by transformers and attention mechanisms, 
has significantly improved image classification, excelling in 
image segmentation and prediction tasks. Our approach 
customizes the Vision Transformer (ViT) by utilizing only the 
encoder component, unlike typical encoder-decoder models. 
The proposed workflow is picturized in the fig. 2. 

 

 
Fig. 2. Proposed Methodology in Flowchart 

The performance of a Vision Transformer (ViT) model is 
heavily influenced by various hyperparameters, including 
patch size, embedding dimensions, number of transformer 
heads, transformer units, and Multi-Layer Perceptron (MLP) 
units.  
 
In this study, two different configurations were tested: one 
with an embedding dimension of 64 and another with 32, 
transformer heads set at 3 and 2 transformer units configured 
as [128, 64] and [64, 32], and MLP units structured as [8192, 
4096] and [2048,1024]. The embedding dimension 
determines the feature representation space, with higher 
values capturing more complex information but increasing 
computational demand. Transformer heads control the self-
attention mechanism, where a higher number enables better 
context understanding but may introduce redundancy. The 
transformer unit sizes dictate the depth and width of the 
transformer layers, affecting learning capacity, while MLP 
units impact the model’s ability to map learned features to 
classification outputs. A balanced combination of these 
hyperparameters is crucial to optimizing performance, 
ensuring that the model captures essential patterns without 
overfitting or losing important spatial details.  
 
Fig. 3 illustrates the ViT processing steps: the input image is 
divided into 8×8 patches and passed through the embedded 
patches layer, followed by the first normalization (x1). It then 
passes through a multi-head attention layer, with skip 
connection 1 (x1, x2), and a second normalization (x3). The  



 

result is processed through MLP layers with 'Gelu' and 
'dropout', followed by skip connection 2 (x2, x3). Finally, the 
output undergoes the MLP head with 'dense' and 'dropout' 
layers, producing logits for classification. 

The parameters which have been modified for the 
proposed transformer model is shown below in table 1 for 
better understanding. 

TABLE I.  TRAINING MODEL PARAMETERS 

Parameters Conditions 
Patch Size 8 X 8 

Activation Function Gelu 
Optimizer ‘adam’ 

Learning rate 0.001 
Maximum Iterations 20 

Epochs 35 

 

IV. RESULTS AND ANALYSIS 

Our research's experimental setup includes a Nvidia 
GeForce RTX 3060 GPU, an Intel Core i7 processor, and 16 
GB of RAM. We also used the Google Colab platform for 
running the programs simultaneously. To construct the 
proposed Vision Transformer model we used to run the 
program in python language with the help of the Keras library 
imported from TensorFlow. As a result, training time has 
potentially been decreased while performance improved. 

A. Training and Validation Curve 

The training split was 80% and the validation split was 
20% as mentioned before. Therefore, while training the ViT 
model the training and validation accuracy along with the loss 
curve has been gained which is depicted in the fig. 4. It is 
evident from the training and validation accuracy curve that 
while the epochs were increasing there were several ups and 
downs but at last the accuracy became much higher than 
before after the 30th epoch.  

 

a) Training & validation accuracy curve 

 

b) Training & validation loss curve 

The overall prediction while training was ongoing has been 
captured which shows a mesmerizing result in predicting the 
true image and the predicted image. The prediction process 
of training data is shown in fig. 5. 

 
Fig. 5. Visualization of true class vs predicted class 

B. Performance Evaluation 

Three performance measures, F1 score, precision, and 
recall, were considered. Table 2 below summarizes the 
performance measurement matrices for each of the three 
classes with the performance evaluation metrices. 

TABLE II.  PERFORMANCE METRICS FOR EACH CLASSES 

 Precision Recall F1_Score Overall 
Accuracy 

Benign 0.9560 0.9942 0.9747  

Malignant 0.9830 0.8923 0.9354 96.98% 

Normal 0.9747 0.9827 0.9913  

C. Performance Comparision 

We have performed three more ViT based transformer 
encoder model for the breast cancer classification: a base 
model with 16×16 input patch size (ViT16), a base model 
with 32×32 patch size (ViT32) and a ViT model implemented  

Fig. 3. Proposed ViT Architecture with added MLP head in the encoder model 

Fig. 4. Accuracy and Loss Curves for training & validation 



Model Optimizer Accuracy Precision Recall F1-Score Patch size 

ViT 8 Adam 96.98% 97.96% 95.46% 96.71% 8×8 

ViT 16 Adam 92.25% 93.15% 92.80% 92.92% 16×16 

ViT 32 Adam 76.17% 86.42% 59.67% 65.22% 32×32 

ViT (from scratch) Adam 71.48% 87.82% 60.13% 64.45% 4×4 

ViT (with data augmentation) Adam 72.82% 84.66% 59.86% 63.79% 16×16 

from scratch. Also, with data augmentation of the breast 
cancer images, the ViT16 model has been programmed to see 
the results. The results are shown in the table 3. 

While augmentation improves model generalizability, it 
poses challenges in breast cancer detection by altering tumor 
position, shape, or contrast. This inconsistency can reduce 
classification accuracy. Thus, while augmentation enhances 
data diversity, selective techniques are essential to preserve 
diagnostic integrity in sensitive medical applications. 

D. Result comparison with recent works

In this part, a comparative analysis has been done to evaluate 
the accuracy and performance of this study. G. Ayana et. al 
[13] and B. Gheflati et. al [14] both have used Vision
Transformer based model to classify the breast cancer and
achieved 95% and 82% accordingly. A hybrid CNN with
transformer model used by B. Shareef [15] achieved 82.8%
of accuracy in cancer classification. Our work differs
significantly from [13] and [14] in terms of ViT
implementation and achieving higher accuracy of detection.

Work Method Accuracy 

G. Ayana [13] ViT 95% 

B. Gheflati [14] ViT 82% 

B. Shareef [15] CNN+Transformer 82.8 % 

Proposed ViT 96.98% 

V. CONCLUSION

     This research proposes a Vision Transformer (ViT) model 
for breast cancer classification, demonstrating its 
effectiveness on the BUSI dataset for early diagnosis through 
a tailored ViT approach. The ViT model with 8 patches 
achieved significant improvements in classification accuracy 
of 96.98%. A smaller patch size, such as 8×8, captures finer 
image details but increases computational complexity, 
whereas larger patches, like 16×16 or 32×32, reduce the 
number of tokens while preserving global structural 
information. The superior performance of the 8×8 patch size 
model suggests that a finer resolution provides better feature 
representation for breast ultrasound images, likely due to the 
enhanced ability to detect subtle tumor features. Further 
research can be done by developing a hybrid transformer-
based encoder decoder model which is more robust than only 
using vision transform based encoder models. 
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