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Abstract— Brain-Computer Interfaces (BCIs) enable people 
with motor impairments to communicate and control their 
environment; nevertheless, the performance of 
electroencephalography (EEG) based motor imagery (MI) 
classification is still limited due to low signal-to-noise ratios, 
differences between individuals, and the complexity of datasets. 
This study investigates two methodologies, the classic Common 
Spatial Patterns (CSP) used with Support Vector Machines 
(SVM) and a deep learning approach that is composed of a 
Denoising Autoencoder (DAE) and a Convolutional Neural 
Network (CNN). We demonstrate these techniques applied to 
the BCI Competition IV 2a and 2b datasets. The results show 
that the DAE-CNN framework achieves an accuracy of 65.4% 
on the BCIC IV 2a dataset. While the CSP and SVM approach 
achieved 72.8% accuracy on the BCIC 2b dataset. This study 
provides meaningful insights for improving MI classification 
and paves the way for hybrid models that can increase BCI 
performance. 

Keywords— Motor Imagery (MI), Common Spatial Pattern 
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I. INTRODUCTION 

Brain-Computer Interfaces (BCIs) allow for direct 
communication between the brain and external devices, 
leading to remarkable opportunities for applications in 
neurorehabilitation and assistive technologies for people with 
severe motor disabilities, such as neuroprosthetics. Out of 
many techniques available, classifying motor imagery (MI) 
through EEG signals has drawn attention due to being non-
invasive, portable and relatively inexpensive. However, 
owing to low signal-to-noise ratio, prone to artifacts and high 
dimensionality of data, EEG based MI systems face multiple 
challenges. The above-mentioned are challenges in making 
generalization and practical [1, 2, 3]. Conventional 
approaches such as Common Spatial Patterns (CSP) in 
combination with Support Vector Machines (SVM) have 
shown success in this area, directly using spatial features that 
are extracted to classify data with a robust decision boundary. 
But their reliance on manual feature engineering limits their 
adaptability with regards to noisy and complex datasets, 
particularly in multi-class or few channels’ problems [4, 5]. 
There are now exciting alternatives in deep learning that have 
emerged more recently. On the other hand, CNNs are capable 
of discovering spatial-temporal features from raw EEG data 
independently, and Denoising Autoencoders (DAE) enhance 
denoising during feature extraction [6,7]. Deep learning 
models hold the potential to achieve incredible results, but in 

order to do so they require a significant amount of 
computational power, preprocessing and large datasets to 
build optimal performance. This work thoroughly compares 
classical CSP-SVM and recent DAE-CNN paradigms, 
utilizing data from BCI Competition IV 2a and 2b, each of 
them poses distinct challenges in terms of complexity and 
channels. The 2a type dataset is a multi-class classification 
with 22 channels and the 2b type dataset is a binary 
classification with just three bipolar channels to measure 
computational efficiency. The evaluation of these 
methodologies provides important insights into the trade-off 
between computational efficiency and reliable feature 
learning, suggesting the possibility of hybrid approaches. 
Bridging the interpretability and efficiency of CSP with the 
powerful feature extraction abilities of neural networks could 
significantly enhance the real-world applicability of BCI 
systems. In conclusion, the results of this work contribute to 
the state-of-the-art of EEG-based MI classification by 
highlighting the merits and disadvantages of both classical 
and modern approaches. These changes may dramatically 
enhance the performance of BCI systems for real-world 
applications such as neurorehabilitation, adaptive prosthetics, 
and assistive devices. 

II. RELATED WORKS

The performance of motor imagery (MI) classification 
based on EEG is critical to the success of Brain-Computer 
Interface (BCI) systems, but facing challenges including low 
signal-to-noise ratio (SNR), high inter-subject variability, and 
high data dimensionality. Traditional methods (such as the 
combination of Common Spatial Patterns (CSP) with Support 
Vector Machines (SVM) or Linear Discriminant Analysis 
(LDA)) are efficient in terms of computations and have 
straightforward interpretations in binary classification 
problems. However, they usually poor in noisy environments, 
high dimensions or multi-class datasets, such as BCI 
Competition IV 2a [12, 13, 14, 15]. Despite all these 
challenges, CSP-SVM frameworks have the potentiality and 
are relatively easy to implement, so still work good for 
resource limitation systems. On the other hand, the surge of 
deep learning methods also fundamentally reshaped MI 
classification algorithms by learning spatial-temporal features 
from raw EEG data using such techniques CNNs and DAEs. 
EEGNet. However, deep learning approaches need vast 
amounts of labeled data, significant computational power, and 
extensive preprocessing before training, while their ability to 
generalize between data.. CSP-SVMs provide a 
mathematically tractable framework for subject-general 



analyses but can struggle to capture complex patterns, while 
CNNs and DAEs outperform in terms of pattern recognition  

but may struggle with the trade-off between performance and 
generalization. It was proposed that combine the 
interpretability of CSP and the feature extraction advantages 
of deep learning could be a good strategy [20, 21]. Adaptation 
of systematic assessment of these approaches across datasets 
of varied complexities and scalability of real-world 
applications are major areas that would require further 
evaluation, reinforcing the need to augment MI classification 
methodologies for successful BCIs. 

III.� MATERIALS AND METHODS

To test the proposed method, BCI Competition IV 2a and 2b 
datasets have been taken into account. An 2b dataset has 
2 MI tasks with 3 bipolar channels and from 2a dataset there are 
9 subjects performing 4 MI tasks for 22 channels of EEG 
recordings. The two datasets were both preprocessed via 
baseline correction, normalization, and segmenting into 
overlapping sliding windows to increase the temporal 
resolution. All datasets were then randomly partitioned into 
stratified sampling training (70%), validation (15%), and test 
sets (15%) with the goal of retaining balanced class 
representation. The 2a dataset consisted of images with high 
dimensionalities, and 2b low-channel efficiency images. 

A. Data Description

The BCI Competition IV 2a[22] dataset is a well-known
benchmark dataset for motor imagery (MI) classification, 
which consists of EEG recordings from 9 subjects performing 
4 different MI tasks (left hand, right hand, feet, tongue), using 
22 electrodes according to the 10-20 system, at 250 Hz 
sampling rate filtered between 0.5–100 Hz. Each subject 
performed 288 trials (72 for each task), where visual cues 
were followed by 2 seconds of MI in a trial, providing very 
variable and noisy data to test MI classification methods. The 
2b dataset[23] contains binary MI tasks (left and right hand) 
recorded by 3 bipolar electrodes (C3, Cz, C4) with a sample 
rate of 250 Hz, along with EOG channels for artifact removal. 
It consists of six runs of 90 trials (45 for each task) each. 

B. Signal Preprocessing

The preprocessing pipeline was mainly designed to
enhance the quality of the EEG signal. The pipeline can be 
described as the following figure: 

Fig. 1. Preprocessing Pipeline 

The raw EEG signal is denoted 𝑋 ∈ 𝑅ே×், where 𝑁 is the
number of channels and 𝑇 is the number of time samples. At 
first the signal 𝑋 is bandpass filtered with 𝑓௅ைௐ = 8.0 and
𝑓ுூீு = 30.0 Hz using Butterworth filter. This is done for
each channel. The filtered signal is then decomposed using 
discrete wavelet transform using DB2 wavelet basis and 4 

levels of decomposition. A threshold value is computed as 
following. At first the variance parameter is computed as 

𝜎 =
1
𝑁 ෍|𝑑௟௞|

ே

௞ୀଵ

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙

In the equation above, 𝑑௟௞ denotes the details
coefficients of level 𝑙. Then the thresholding value 
𝛽 is computed as: 

(1) 

𝛽 = 𝛼𝜎ඥ2 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑇 
Where 𝛼 is the strength of thresholding. 
The preprocessed detail coefficients are computed 
using a soft thresholding technique as: 

𝑑௟௞ =
𝑑௟௞

|𝑑௟௞| × 𝑚𝑎𝑥(|𝑑௟௞| − 𝛽, 0) 
(3) 

(2) 

Finally, each channel 𝑘 of EEG trial 𝑗 is whitened as 

𝑥௝௞[𝑛] =
𝑥௝௞[𝑛] − 𝜇௝௞

𝜎௝௞
ଶ

(4) 

C. Classification

This study utilized two different classification methods: a
DAE-CNN framework focused on harnessing deep learning 
for effective feature extraction and classification, and a CSP-
SVM technique, which represents a conventional machine 
learning approach frequently applied in motor imagery (MI) 
classification.  

1) DAE-CNN Framework:
An autoencoder is an unsupervised machine learning 
technique that aims to compute a compressed representation 
of an input signal. An autoencoder tries to compress the 
signal in such a way that will help reconstruct the original 
signal with minimum mean squared error loss. In this process, 
the compressed representation can be used as a good latent 
space feature for the original signal. The idea can be 
visualized as following: 

Fig. 2. DAE Architecture 

Let us denote a high dimensional input signal as 𝑥 ∈ 𝑅௠ , the
target is to compute a lower dimensional signal 𝑥 ∈ 𝑅௡

where 𝑛 ≪ 𝑚. Let us denote the encoder parameterized by 𝜙 
as 

𝑧 = 𝐸థ(𝑥) (5) 

And the decoder as 

𝑥ᇱ = 𝐷ఏ(𝑧) (6)



For example, the encoder can be a multilayer perceptron 

𝐸థ(𝑥)�=�𝜎(𝑊𝑥�+�𝑏) (7)

Finally, the training objective is 

1
𝑁 ෍ ‖𝑥௜ − 𝐷ఏ൫𝐸𝜙 (𝑥௜)൯‖ଶ

ே

௜ୀଵ

(8) 

The denoising is achieved by deliberately injecting noise to 
the input data during training as: 

𝑥௜ = 𝑥௜ + 𝜖
𝜖~𝑁(0, 1)

(9) 

In this study, the particular architecture of the denoising 
autoencoder based CNN  is as follows:  

TABLE I. PROPOSED DAE BASED CNN ARCHITECTURE 

Layer Layer description Output size Connected to 

Input 
layer 

EEG data with 
dimensions (22, 256) 

(22, 256) — 

1st DAE 
Layer 

Applies denoising to the 
input EEG signal. 

(22, 256) Input Layer 

2nd 
DAE 
Layer 

Learns latent 
representations by 
reducing noise further. 

(11, 128) 1st DAE Layer 

3rd 
DAE 
Layer 

Final denoised output 
with compressed and 
clean features. 

(5, 64) 2nd DAE Layer 

1D 
Convol
ution 
Layer 

Learns spatial-temporal 
features from the 
denoised output. 

(8, 64) 3rd DAE Layer 

Pooling 
Layer 

Reduces temporal 
resolution to focus on 
dominant features. 

(8, 32) 1D Convolution 
Layer 

Dense 
Layer 

Fully connected layer for 
classification. 

(4) Pooling Layer 

Softmax 
Layer 

Outputs class 
probabilities for 
classification tasks. 

(4) Dense Layer 

Overall, the workflow is the following: 

Fig. 3. Workflow Diagram 

2) CSP-SVM Method:
The CSP-SVM method employs the well-established 
Common Spatial Patterns (CSP) algorithm for feature 

extraction. CSP applies spatial filters 𝑊  on the raw EEG 
signals 𝑋 to output discriminative components: 𝑍 = 𝑊்𝑋,
where 𝑍  is the spatially filtered signals. The spatial filter 
matrix 𝑊 is computed as 

𝑤 = arg min
௪

𝑤்𝛴ଵ𝑤
𝑤்𝛴ଶ𝑤

(10) 

Where 

𝛴௖ = 𝑋௖𝑋௖
் 𝑓𝑜𝑟 𝑐 ∈ {1, 2} (11) 

A spatial filter matrix 𝑊 = [𝑤ଵ 𝑤ଶ  … 𝑤ଶ௠  ] ∈ 𝑅ே×ଶெ .For
each EEG trial 𝑋, the feature vector 𝑧 ∈ 𝑅ଶெ is computed as

𝑧௠ =𝑙𝑜𝑔 (𝑣𝑎𝑟(𝑤௠
் 𝑋)) (12) 

In particular, six CSP features were chosen for the BCI IV 2a 
dataset because of its high channel number, and only three 
features worked well for the lower spatial resolution 2b 
dataset [23]. 
After all trial were spatially filtered, a kernel SVM with radial 
basis function kernel was used to perform classification 
according to the following flow diagram: 

Fig. 4. Classification Diagram 

IV. RESULT AND DISCUSSION

DAE-CNN and CSP-SVM were evaluated using five-fold 
cross-validation, with DAE-CNN leveraging data 
augmentation for complex feature learning and CSP-SVM 
prioritizing computational efficiency for binary classification 
tasks where  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑇
(14) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(15) 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗   𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙

(16) 

The performance of the DAE-CNN and CSP-SVM models 
were compared with different methodology shown in Table 
2. Their DAE-CNN outperformed the CSP-SVM in the
multi-class BCI IV 2a dataset with 22 channels and four MI
classes, achieving an accuracy of 65.4%, 4.2% better that
CSP-SVM's task with 22 channels and 4 MI classes,



obtaining an accuracy of 61.2%. However, both models 
exhibited difficulties with inter-subject variability and 
complexity of the dataset, suggesting that a performance 
optimization is necessary to improve multi-class high-
dimensional classification performance. In contrast, CSP-
SVM out-performed on the binary-class BCI IV 2b dataset, 
with only three channels of data, achieving accuracy of 
72.8% against DAE-CNN's result of 70.3%. It shows CSP-
SVM is superior in simple low channel conditions because of 
its efficient extracting and discrimination capabilities of the 
features. Additionally, cross-validation results confirmed that 
CSP-SVM is more consistent in the 2b dataset, and DAE-
CNN possesses greater potential to process higher order, 2D data 
in future applications. 

TABLE II. COMPARISON OF RESULTS 

Paper Method Accuracy 

R. Zhang et al. [24] CSP and SVM 58.2% - 61.2%. 

Alimardani et al. [25] 
MIN2Net, EEGNet 
and DeepConvNet 

51.7% - 62.5% 

S. S. Mohseni Salehi 
et al. [26] 

HCSP 64.5% 

This work 
CSP-SVM and 

DAE-CNN 
61.2% - 72.8% 

The key results emerged in this latter, two-dimensional 
setting but highlight the strengths of DAE-CNN over CSP-
SVM. In the future, one possible research direction is to study 
hybrid models that blend the strengths of both models. 

V. CONCLUSION

    The following study was performed comparing DAE-CNN 
and CSP-SVM for motor imagery classification on BCI 
Competition IV datasets. DAE-CNN was limited in the 
results that it achieved, reaching 65.4% accuracy on the 
high-dimensional 2a dataset where as CSP-SVM 
outperformed, achieving 72.8% accuracy on the simpler 2b 
dataset. However, there are still limitations for both models, 
the performance needs to be improved. Hybrid models, high-
level preprocessing of the data, and domain adaptation are all 
possible future avenues of exploration to improve 
performance. Similarly, testing on diverse datasets from 
various subjects would increase generalizability and find 
applicability in the real world. 

REFERENCES 
[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T.

M. Vaughan, "Brain–computer interfaces for communication and
control," IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 10, no. 2, pp. 167–185, 2002. doi:
10.1109/TNSRE.2002.1022070.

[2] N. Birbaumer and L. G. Cohen, "Brain–computer interfaces:
Communication and restoration of movement in paralysis," Journal of
Physiology, vol. 579, no. 3, pp. 621–636, 2007. doi: 
10.1113/jphysiol.2006.125948.

[3] B. Blankertz, G. Curio, and K. R. Müller, "Classifying single trial EEG:
Towards brain computer interfacing," in Advances in Neural 
Information Processing Systems (NIPS), vol. 14, 2002.

[4] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, "Optimal spatial 
filtering of single trial EEG during imagined hand movement," IEEE
Transactions on Biomedical Engineering, vol. 47, no. 4, pp. 847–856, 
2000. doi: 10.1109/10.847807.

[5] K. F. LaFleur, K. Cassady, T. Doud, K. Shades, E. Rogin, and B. He,
"Quadcopter control in three-dimensional space using a noninvasive 
motor imagery-based brain–computer interface," Journal of Neural 
Engineering, vol. 10, no. 4, p. 046003, 2013. doi: 10.1088/1741-
2560/10/4/046003.

[6] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. 
Hung, and B. J. Lance, "EEGNet: A compact convolutional neural 
network for EEG-based brain–computer interfaces," IEEE
Transactions on Biomedical Engineering, vol. 65, no. 9, pp. 2228–
2238, 2018. doi: 10.1109/TBME.2017.2771300.

[7] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, "Extracting 
and composing robust features with denoising autoencoders," in 
Proceedings of the 25th International Conference on Machine Learning 
(ICML), pp. 1096–1103, 2008.

[8] M. Tangermann et al., "Review of the BCI Competition IV," Frontiers
in Neuroscience, vol. 6, p. 55, 2012. doi: 10.3389/fnins.2012.00055

[9] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R.
Wolpaw, "BCI2000: A general-purpose brain–computer interface 
(BCI) system," IEEE Transactions on Biomedical Engineering, vol. 51, 
no. 6, pp. 1034–1043, 2004. doi: 10.1109/TBME.2004.827072.

[10] S. G. Mason and G. E. Birch, "A general framework for brain–
computer interface design," IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 11, no. 1, pp. 70–85, 2003. doi: 
10.1109/TNSRE.2003.814481.

[11] G. Pfurtscheller and C. Neuper, "Motor imagery and direct brain-
computer communication," Proceedings of the IEEE, vol. 89, no. 7, pp.
1123–1134, 2001. doi: 10.1109/5.939829.

[12] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, "Optimal spatial 
filtering of single trial EEG during imagined hand movement," IEEE
Transactions on Biomedical Engineering, vol. 47, no. 4, pp. 847–856, 
2000. doi: 10.1109/TBME.2000.843506.

[13] S. G. Mason and G. E. Birch, "A general framework for brain–
computer interface design," IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 11, no. 1, pp. 70–85, 2003. doi: 
10.1109/TNSRE.2003.814481.

[14] B. Blankertz, G. Curio, and K. R. Müller, "Classifying single trial EEG:
Towards brain computer interfacing," in Advances in Neural 
Information Processing Systems (NIPS), vol. 14, 2002.

[15] G. Schalk et al., "BCI2000: A general-purpose brain–computer 
interface (BCI) system," IEEE Transactions on Biomedical 
Engineering, vol. 51, no. 6, pp. 1034–1043, 2004. doi: 
10.1109/TBME.2004.827072.

[16] V. J. Lawhern et al., "EEGNet: A compact convolutional neural 
network for EEG-based brain–computer interfaces," IEEE
Transactions on Biomedical Engineering, vol. 65, no. 9, pp. 2228–
2238, 2018. doi: 10.1109/TBME.2017.2771300.

[17] K. F. LaFleur et al., "Quadcopter control in three-dimensional space
using a noninvasive motor imagery-based brain–computer interface,"
Journal of Neural Engineering, vol. 10, no. 4, p. 046003, 2013. doi: 
10.1088/1741-2560/10/4/046003.

[18] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, "Extracting 
and composing robust features with denoising autoencoders," in Proc.
25th International Conference on Machine Learning (ICML), pp.
1096–1103, 2008.

[19] M. Tangermann et al., "Review of the BCI Competition IV," Frontiers
in Neuroscience, vol. 6, p. 55, 2012. doi: 10.3389/fnins.2012.00055.

[20] G. Pfurtscheller and C. Neuper, "Motor imagery and direct brain-
computer communication," Proceedings of the IEEE, vol. 89, no. 7, pp.
1123–1134, 2001. doi: 10.1109/5.939829.

[21] N. Birbaumer and L. G. Cohen, "Brain–computer interfaces:
Communication and restoration of movement in paralysis," Journal of
Physiology, vol. 579, no. 3, pp. 621–636, 2007. doi: 
10.1113/jphysiol.2006.125948.

[22] Brunner, R. Leeb, G. R. Müller-Putz, A. Schlögl, and G. Pfurtscheller,
“BCI Competition 2008 – Graz data set A,” Institute for Knowledge
Discovery, Graz University of Technology, Austria, 2008.

[23] R. Leeb, C. Brunner, G. R. Müller-Putz, A. Schlögl, and G.
Pfurtscheller, “BCI Competition 2008 – Graz data set B,” Institute for
Knowledge Discovery, Graz University of Technology, Austria, 2008.

[24] R. Zhang et al., "Using Brain Network Features to Increase the
Classification Accuracy of MI-BCI Inefficiency Subject," in IEEE
Access, vol. 7, pp. 74490-74499, 2019, doi: 
10.1109/ACCESS.2019.2917327.

[25] Alimardani, Maryam & Kocken, Steven & Leeuwis, Nikki. (2023). 
End-to-End Deep Transfer Learning for Calibration-free Motor 
Imagery Brain Computer Interfaces. 10.48550/arXiv.2307.12827.

[26] S. S. Mohseni Salehi, M. Moghadamfalahi, F. Quivira, A. Piers, H. 
Nezamfar and D. Erdogmus, "Decoding complex imagery hand 
gestures," 2017 39th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Jeju, Korea
(South), 2017, pp. 2968-2971, doi: 10.1109/EMBC.2017.8037480.


	Resized_letterSize_All86CRPs.pdf
	PID112


