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Abstract—Regular blood pressure (BP) monitoring provides 
critical insights into an individual’s health status. However, 
traditional cuff-based BP measurement methods are bulky and 
unsuitable for constant monitoring. This study presents an 
algorithm for precise and continuous systolic and diastolic blood 
pressure (DBP) measurement, leveraging statistical features 
extracted from physiological signals. The proposed 
methodology encompasses signal segmentation, feature 
extraction, and pattern analysis to establish a strong correlation 
between photoplethysmogram (PPG), electrocardiogram (ECG) 
characteristics and BP levels. The framework computes BP 
values using a combination of physiological parameters and 
holistic signal representations by processing these vital signals. 
A publicly available dataset is employed to train and validate a 
deep-learning model that accurately predicts BP readings. 
Performance is evaluated using key metrics, including mean 
absolute error (MAE) and root mean square error (RMSE), 
demonstrating the model's reliability. The findings reveal the 
potential of PPG and ECG signals for real-time, noninvasive BP 
monitoring, paving the way for advanced healthcare 
applications and next-generation wearable technologies. 
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I. INTRODUCTION 

One essential physiological measure that offers vital 
information about a person's cardiovascular health is blood 
pressure (BP). It represents the pressure blood in circulation 
puts on blood vessel walls, especially arteries [1]. Systolic 
blood pressure (SBP), which measures the pressure during 
cardiac contractions, and diastolic blood pressure (DBP), 
which measures the pressure between heartbeats, are the 
primary measurements defining blood pressure. The average 
resting BP is 80 mmHg (diastolic) and 120 mmHg (systolic). 
Monitoring BP is vital for diagnosing and managing 
cardiovascular diseases, including hypertension, a leading 
global health concern [2]. While accurate, traditional cuff-
based BP measurement methods are often inconvenient and 
unsuitable for nonstop monitoring due to their bulky design 
and intermittent measurement capability [3]. In clinical 

settings, invasive procedures, such as arterial catheterization, 
provide real-time, high-accuracy readings but are limited to 
critical care scenarios due to their invasive nature. Non-
invasive methods, including cuff-based devices, are more 
practical but lack the capability for continuous monitoring 
and may cause discomfort during repeated use [4]. 
Recent advancements in sensor technologies, particularly 
photoplethysmography (PPG) and electrocardiography 
(ECG) have paved the way for noninvasive, continuous BP 
monitoring. By shining light into the skin and measuring the 
intensity of the light that is reflected or transmitted, PPG is 
an optical method that can identify changes in blood volume 
in the microvascular bed of tissue. However, ECG offers 
supplementary insights into cardiovascular dynamics by 
providing electrical activity data of the heart [5]. Long Short-
Term Memory (LSTM) networks effectively capture 
temporal dependencies, enhancing the performance of the 
model for sequential data tasks [6]. 
This study aims to design and implement a noninvasive blood 
pressure estimation system leveraging PPG and ECG signals. 
The proposed framework seeks to provide continuous and 
accurate BP monitoring by extracting and analyzing 
statistical features from these physiological signals. The 
system integrates advanced feature extraction techniques and 
deep learning models to establish a robust relationship 
between BP and PPG or ECG-derived features. 
The significant contributions of this study are as follows: 
1. Non-Invasive BP Monitoring Framework: Developed an

incessant blood pressure monitoring system using PPG
and ECG signals, replacing cuff-based methods with a
user-friendly, real-time solution.

2. Dual-Signal Integration for Accuracy: Combined PPG
and ECG signals to extract complementary features,
significantly improving the precision of systolic and
diastolic BP predictions.

3. Advanced Deep Learning Implementation: Utilized
modified LSTM networks for accurate BP estimation,
optimized for high performance and adaptability to
individual variability.



II. LITERATURE REVIEW

Recent studies have focused on estimating blood pressure 
(BP) using noninvasive and wearable technologies, 
particularly leveraging PPG signals. PPG, a light-based 
technique, has gained significant attention for BP estimation 
due to its noninvasive nature, ease of use, and integration into 
wearable devices [7]. The LeNet model, which includes 
convolutional and max-pooling layers, serves as the 
foundation for many modern deep-learning architectures, 
helping in the effective extraction of features [8]. Hasanzadeh 
et al. [9] demonstrated reliable BP estimation from PPG data 
using morphological features like the dicrotic notch and 
systolic/diastolic peaks. These features enhance accuracy, 
especially in wearable sensor applications. Kurylyak et al. 
[10] used neural networks with PPG-derived features like
PWV, heart rate, and blood flow to improve BP estimation
accuracy over traditional methods. The authors proposed a
cuff-less BP estimation method using CNNs for local features
and Transformers for global learning, achieving high
accuracy but limited by sensitivity to signal quality and high
computational complexity, impacting real-time applications
[11]. In addition to neural networks, other machine-learning
methods have been widely explored for BP estimation. For
example, PPG signals' association with pulse wave velocity
(PWV) has been extensively studied, with studies like [12]
showing the correlation between PPG data and BP. PWV, a
measure of arterial stiffness, is directly influenced by BP
levels, making it a valuable feature for BP prediction models.
PPG's versatility also extends to other cardiovascular health
applications, such as heart rate variability [13], oxygen
saturation measurement [14], and detecting conditions like
atrial fibrillation [15].

III. PROPOSED METHODOLOGY

The proposed methodology focuses on developing a cuffless 
blood pressure estimation model leveraging physiological 
signals such as PPG, ECG, and ABP. The process involves 
data preparation, feature extraction, model training, and 
evaluation. The following steps outline the methodology in 
detail: 

A. Dataset Description

The study's dataset includes physiological signals from the 
MIMIC-II database on PhysioNet, such as PPG, ECGs, and 
ABP. This publicly available dataset contains over 12,000 
records collected from patients in intensive care units across 
the United States. The signals underwent preprocessing and 
validation by Kachuee et al. [16] to ensure reliability and 
remove noise, artefacts, and inconsistencies. The dataset 
offers a robust basis for evolving and testing machine 
learning algorithms for estimating cuffless blood pressure, 
enabling accurate and non-invasive systolic, diastolic, and 
mean arterial pressure monitoring. 

B. Dataset Preprocessing

The MIMIC database contains numerous signals that are 
often compromised due to various distortions and artifacts, 
rendering them unsuitable for analysis. To prepare these 
signals for feature extraction, it is essential to eliminate 

unreliable data through a comprehensive preprocessing 
approach. This process begins by segmenting the signals into 
fixed-size blocks, each of which undergoes a series of 
cleaning steps. Initially, all signals are smoothed using a 
simple averaging filter to reduce noise and minor 
fluctuations. Subsequently, signal blocks exhibiting irregular 
or physiologically implausible blood pressure values are 
identified and removed to ensure the reliability of the data. 
Following this, blocks with abnormal heart rate values are 
also discarded, as they can indicate measurement errors or 
artifacts. Despite the initial smoothing, some signal blocks 
may still display severe discontinuities, which are detected 
and eliminated to maintain signal continuity. Additionally, 
the autocorrelation of photoplethysmogram (PPG) signals is 
calculated to assess the consistency between successive 
pulses, with blocks showing significant variations being 
removed. By systematically applying these preprocessing 
steps, the remaining dataset is significantly cleaner and more 
robust, making it suitable for accurate and reliable feature 
extraction in subsequent analytical processes. 

C. Feature Extraction

This study extracts features from PPG and ECG signals to 
predict DBP and SBP. Feature extraction is vital for 
transforming raw physiological signals into meaningful 
representations that enhance model performance and 
interpretability. We employ statistical and signal-processing 
techniques to capture key physiological patterns influencing 
blood pressure.  

IV. PREPARE YOUR PAPER BEFORE STYLING

(a) 

(b) 
Fig. 1. Extracted signals from the dataset (a) PPG, b) ECG 

The features include the mean (μ) representing the average 
amplitude, standard deviation (σ) indicating signal 
variability, maximum and minimum values reflecting peak 
pressure points (SBP) and baseline activity (DBP), peak-to-
peak range (PTP) highlighting pulse amplitude, median for 
central tendency, variance (σ²) showing signal consistency, 
mean of first differences to capture rate of change, sum of 
absolute differences (SAD) for total signal variability, and 
mean of absolute values representing overall signal 
magnitude. Fig.1. shows the extracted signals from the 
dataset. 



D.� Proposed Network Architecture

The proposed blood pressure estimation framework employs 
a robust LSTM-based deep learning architecture, 
meticulously designed to predict SBP and DBP with high 
accuracy. The SBP prediction model incorporates two 
stacked LSTM layers of 128 and 64 units, respectively, to 
capture both short-term and long-term dependencies in the 
sequential data. The first LSTM layer processes the input 
features and passes its outputs to the second LSTM layer, 
enabling the network to learn intricate temporal patterns 
effectively. Each LSTM layer is followed by a Dropout layer 
with a 20% dropout rate to mitigate overfitting, ensuring 
robust generalization on unseen data. A Dense layer with 32 
neurons and ReLU activation further refine the extracted 
features, while the final output layer, consisting of a single 
neuron, predicts the SBP value. Similarly, the DBP prediction 
model leverages an LSTM layer with dynamically tuned units 
to process sequential input, followed by a Dropout layer to 
enhance training stability. A Dense layer with ReLU 
activation enhances feature extraction, culminating in a 
single output neuron for precise DBP prediction. Both models 
are trained on an 80-20 dataset split, ensuring an optimal 
balance between training and testing subsets. To provide 
unbiased feature scaling and improved convergence, the 
feature set is standardized using a StandardScaler. 
The architecture is optimized through hyperparameter tuning 
using the RandomSearch method, exploring a comprehensive 
range of parameters. The best-performing configuration 
includes 128 LSTM units, a dropout rate of 0.3, a dense layer 
size of 128, and a learning rate of 0.001, selected based on 
minimizing validation loss and maximizing model 
performance. This process employs a custom function to 
iteratively build and evaluate models based on validation 
loss, ensuring the selection of the best-performing 
configuration. Advanced training callbacks, including 
EarlyStopping and ReduceLROnPlateau, halt training upon 
validation performance stagnation and dynamically adjust 
learning rates, further enhancing efficiency and convergence. 
Fig. 2 illustrates the proposed blood pressure estimation 
algorithm's block diagram, presenting a structured pipeline 
for accurately predicting blood pressure values. 

Fig. 2. The suggested blood pressure estimation algorithm's block diagram. 

IV. RESULT AND DISCUSSION 

Two models, SVM and LSTM, are tested in our experiment 
to see how well they predict SBP and DBP. Three 
assessments metrics—MAE, STD, and RMSE—display the 
results. For SBP prediction, SVM achieved an MAE of 11.00, 
STD of 8.15, and an RMSE of 6.50, while LSTM yielded an 
MAE of 7.38, STD of 6.13, and RMSE of 5.15. For DBP 
prediction, SVM resulted in MAE of 7.61, STD of 6.78, and 
RMSE of 7.11, whereas LSTM performed better with an 
MAE of 3.67, STD of 5.20, and RMSE of 5.21. These results 
indicate that the LSTM model outperforms the SVM model 
in predicting SBP and DBP. Table 1 illustrates the experiment 
results evaluating the performance of SVM and LSTM 
models for predicting SBP and DBP. 

TABLE I. EVALUATION METRICS FOR SBP AND DBP PREDICTION 
USING SVM AND LSTM MODELS 

Fig. 3 presents the performance of the proposed LSTM model 
in predicting SBP and DBP using three evaluation metrics: 
MAE, STD, and RMSE. For SBP prediction, the LSTM 
model achieves an MAE of 7.38 mmHg, an STD of 6.13 
mmHg, and an RMSE of 5.15 mmHg, demonstrating its 
ability to minimize absolute and relative errors while 
maintaining consistent predictions. For DBP prediction, the 
LSTM model further excels, achieving an MAE of 3.67 
mmHg, an STD of 5.20 mmHg, and an RMSE of 5.21 mmHg, 
reflecting its robustness and precision in diastolic pressure 
estimation. These findings demonstrate the LSTM model's 
improved capacity to provide precise and consistent blood 
pressure predictions as well as its efficacy in capturing the 
temporal dynamics of physiological data like PPG and ECG. 

Fig. 3. Visual representation of SBP and DBP Prediction using SVM and 
LSTM Models 

Table 2 summarizes and compares the performance of 
different methods for predicting SBP and DBP using various 
datasets and signal types, evaluated on three metrics: MAE, 
STD, and RMSE. The methods compared include gradient  

Evaluation 
Matrices 

SBP DBP 

SVM LSTM SVM LSTM 

MAE 11.00 7.38 7.61 3.67 
STD 8.15 6.13 6.78 5.20 

RMSE 6.50 5.15 7.11 5.21 



 

TABLE II.  COMPREHENSIVE COMPARISON OF OUR PROPOSED APPROACH WITH EXISTING METHODS FOR ESTIMATING BLOOD PRESSURE (BP) 

boosting regression without clustering [17], which achieved 
an MAE of 6.36 for SBP and 6.27 for DBP on the MIMIC II 
dataset with PPG and ECG signals, though STD and RMSE 
were unavailable. SVM [18] on the University of Queensland 
dataset with PPG signals reported an MAE of 11.64 for SBP 
and 7.61 for DBP, with STD values of 8.22 and 6.78. Random 
Forest Regression (RFR) [19] on the same dataset reported an 
MAE of 13.04 for SBP and 5.96 for DBP, with STD values 
of 12.80 and 5.67, but no RMSE. Adaboosting [20] also on 
MIMIC II achieved MAEs of 11.17 for SBP and 5.35 for 
DBP, with STD values of 10.15 and 6.14, respectively, but 
no RMSE.  The proposed LSTM method on MIMIC II with 
ECG and PPG signals achieved the best performance, with 
MAEs of 7.38 for SBP and 3.67 for DBP, and STD values of 
6.13 and 5.20, respectively, along with RMSE values of 5.15 
and 5. 

V. CONCLUSION  

This study highlights the effectiveness of the proposed LSTM 
model for predicting SBP and DBP from PPG and ECG 
signals. The model demonstrated superior performance with 
lower MAE and RMSE compared to traditional machine 
learning methods such as Gradient Boosting, Random Forest, 
AdaBoost, and SVM. By leveraging its ability to capture 
temporal dependencies, the LSTM model effectively 
identified complex patterns within the MIMIC-II dataset, 
delivering robust and consistent predictions. The findings 
underscore the potential of LSTM-based approaches for non-
invasive, accurate, and real-time blood pressure estimation, 
surpassing the limitations of conventional methods reliant on 
static feature extraction. This work establishes a foundation 
for advancing personalized healthcare systems. Future 
research should focus on validating the model on more 
significant, diverse datasets and exploring hybrid 
architectures to enhance its predictive capabilities further. 
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Studies 
 

Method Dataset Signal SBP DBP 
MAE STD RMSE MAE STD RMSE 

[17] Gradient boosting regression 
without clustering 

MIMIC II PPG, ECG 6.36 — 10.39 6.27 — 10.22 

[19] RFR MIMIC II PPG, ECG 13.04 12.80 — 5.96 5.67 — 
[20] Adaboosting MIMIC II ECG, PPG 11.17 10.15 — 5.35 6.14 — 

[18] SVM 
Univ. of 

Queensland 
PPG 11.64 8.22 — 7.61 6.78 — 

Proposed 
Method 

LSTM MIMIC II ECG, PPG 7.38 6.13 5.15 3.67 5.20 5.21 


