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Abstract—A mental illness called schizophrenia (ScZ) is char-
acterized by abnormalities in the social, behavioral, percep-
tual, cognitive, and other domains of life. ScZ is traditionally
diagnosed by an experienced psychiatrist conducting patient
interviews, which is a laborious, subjective, and biased procedure.
Researchers have recently demonstrated that the diagnostic
accuracy of ScZ may be improved by integrating the deep
learning (DL) model into the detection process. EEG signals offer
more thorough insights into the underlying neural mechanisms
and brain biomarkers of ScZ than other modalities like computed
tomography (CT) scan or functional magnetic resonance imaging
(fMRI). The use of EEG signals as an efficient biomarker is still
being studied, despite the fact that deep learning models demon-
strate encouraging results in identifying ScZ. For automatic
ScZ detection using only EEG signals, a thorough evaluation
of Extended 1-Dimensional Convolutional Neural Network (Ex-
1DCNN) models and Recurrent Neural Network (RNN) deep
learning models have been developed. The EEG signals are
preprocessed by ICA (Independent Component Analysis) to
remove artifacts and noises. These results show that the RNN
model outperforms the Ex-1IDCNN in terms of test loss, F1 score,
and accuracy (86.44% vs 64.78%), making it a better option for
ScZ classification.

Index Terms—EEG, Deep Learning, Independent Component
Analysis (ICA), Schizophrenia.

I. INTRODUCTION

A dangerous mental illness that alters thoughts, feelings,
and behavior is schizophrenia. A combination of delusions,
hallucinations, and disordered thought patterns and actions
could be the outcome. When someone has a hallucination,
they see or hear things that other people aren’t witnessing.
Firm ideas about untrue things are a sign of delusions.
Schizophrenia patients may appear to lose all sense of reality,
which can make day-to-day living extremely difficult [1].
Electroencephalogram (EEG) has emerged as a powerful tool
for studying the electrical activity and functional changes
in the brain associated with Schizophrenia diseases. EEG
can help identify alterations in the brain’s electrical activi-
ties that occur in the early stages of the disease. Machine
learning (deep learning) techniques, applied to EEG data,
offer the potential to enhance the accuracy and efficiency
of Schizophrenia disease diagnosis and classification. Using
EEG data for schizophrenia classification is facilitated with
early detection and intervention, large-scale data analysis,
and reduced diagnosis. EEG (electroencephalogram) records
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electrical activity in the brain, capturing real-time neural
dynamics. This can reveal abnormalities in brain function that
are often associated with schizophrenia, such as altered brain
wave patterns. Machine learning (deep learning) models can
analyze these complex EEG signals to identify biomarkers
of schizophrenia, potentially leading to earlier and more
accurate diagnoses. This approach could also help in under-
standing the underlying mechanisms of the disorder, paving
the way for better treatments. The application of artificial
intelligence (AI) techniques, especially machine learning (ML)
and deep learning (DL) has shown promising results for
automated schizophrenia detection. Traditional ML models
like support vector machines (SVM) and random forests have
been utilized to predict schizophrenia using neuroimaging
data such as magnetic resonance imaging (MRI). However,
these models often require substantial feature engineering and
preprocessing, limiting their practical use [2]. In contrast, DL
models such as convolutional neural networks (CNNs) have
been effective in directly learning patterns from raw EEG
and MRI data, significantly improving diagnostic accuracy.
Recent advancements highlight hybrid CNN-recurrent neural
networks (RNNs) and transfer learning as effective approaches
to handle limited annotated datasets, while combining sensor-
level and source-level EEG data further enhances diagnostic
capability [3]. Multi-modal approaches that integrate both
EEG and MRI data offer better robustness and performance.
Shen et al. (2023) demonstrated how 3D CNNs can leverage
dynamic functional connectivity from EEG data to identify
schizophrenia with high precision [3]. However, Sharma et al.
(2023) emphasize that these models must balance complexity
with interpretability for clinical settings [4]. Key challenges in
deploying these models in practice are Ensuring transparency
and addressing concerns related to data privacy and bias [5].

II. MATERIALS AND METHODS
A. EEG Dataset Description

The dataset comprised 14 paranoid schizophrenia patients
with 7 males (Age: 27.9 £ 3.3 Y) and 7 females (Age: 28.3
+ 4.1 Y), and 14 healthy controls with 7 males (Age: 26.8 +
2.9 Y) and 7 female (Age: 28.7 £ 3.4 Y). The patients met
the International Classification of Diseases ICD-10 criteria for
paranoid schizophrenia (category F20.0). The control group
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Fig. 1. (a) Healthy Control, (b) Schizophrenia Patient.

was matched in gender and age to the 14 patients completing
the study [6]. All subjects were placed in an eyes-closed
resting state condition, and their EEG data was captured for
15 minutes. The conventional 10-20 EEG montage with 19
EEG channels—Fpl1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,
C4, T4, T5, P3, Pz, P4, T6, O1, O2 was used to collect the
data at a sampling frequency of 250 Hz. FCz was the location
of the reference electrode. EEG signals of a healthy control
and a schizophrenia patient are illustrated in Fig. 1.

B. Proposed Methodology

The analytical pipeline of the proposed work for diag-
nosing Schizophrenia patients employing multichannel EEG
signals is shown in Fig. 2. It encompasses six key steps: (i)
Preprocessing EEG signals, (ii) Epoching the Signals, (iii)
data standardization, (iv) training an Extended 1DCNN (Ex-
IDCNN) model (v) training an RNN model, (vi) 10-fold cross-
validation testing, and (vii) A comparison between Two model
performance also done for better accuracy.
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Fig. 2. Analytical pipeline of the proposed work.
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Fig. 3. ICA Components after decomposition.
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Fig. 4. 19-Channel EEG Signal before and after ICA components removal.

C. Preprocessing EEG Signals

Preprocessing EEG Signals can be contaminated with dif-
ferent artifacts and noises during the acquisition. The artifacts
can be from both biological and non-biological sources. Ar-
tifacts of biological sources include eye blinks, cardiac activ-
ity, movements, and muscular activities, and non-biological
sources can be attributed to channel noise and power line
noise. For artifacts of non-biological origins, such as power
line noise, we employ a 45 Hz notch filter for noise sup-
pression purposes. Biological artifacts can account for the
vast majority of artifacts in EEG signals [7]. To ensure that
our preprocessed signal accurately represents sole brainwave
activity, preventing erroneous analysis, we employ the inde-
pendent component analysis (ICA) algorithm [8] on EEG data
to remove biological artifacts. The ICA algorithm assumes that
the EEG signal is a mixture of independent components and
distinguishes them as either neurological or artifact compo-
nents that are suppressed. The process is performed using the
MATLAB function EEGLAB as follows:

o Load the Dataset: Load EEG dataset into EEGLABI

o Preprocess the Data: Reject bad channels and artifacts

o Decompose data by ICA: In EEGLAB ICA decomposi-
tion is performed.

o Inspect ICA Components: Visualize and inspect the ICA
components to identify and remove artifacts. ICA Com-
ponents after decomposition are illustrated in Fig. 3.

o Back Project Data: Subtract the identified artifact com-
ponents from the original data.



A comparative illustration of the EEG signal before and after
ICA components removal is shown in Fig. 4.

D. Epoching EEG Signals

Epoching the time series data in 5 s epochs with a one-
second overlap between successive epochs.

E. Spliting EEG Signals

After obtaining the preprocessed data, we need to divide the
data set into training, testing, and validation sections. In this
experiment, we use 80 percent of the data for training and
20 percent for testing and validation. Each section contains
schizophrenia and healthy control classes.

F. Extended 1D Convolutional Neural Network (Ex-1DCNN)
Architecture

A typical CNN model consists of convolution, pooling,
and fully connected layers [9]. Fig. 5(a) illustrates the ex-
tended IDCNN (Ex-1DCNN) architecture that we propose in
this study, which comprises 5 1D convolution layers (Filter
size=5), Batch normalization layer, 5 pooling layers (Activa-
tion LeakyReLU), 2 Dropout layers (0.5) and 1 fully connected
layer (Activation= Sigmoid). Unlike the conventional method
of employing only max pooling, we combined 2 Maxpooling,
2 Averagepooling, and 1 Global Average pooling layer in the
pooling layers. The development of an extended IDCNN (Ex-
IDCNN) architecture resulted from this change [10].

This extended 1DCNN model is designed for binary clas-
sification tasks, employing several layers to achieve effective
feature extraction and classification. It starts with a ConvlD
layer that applies convolution using 5 filters with a kernel
size of 3 and strides of 1. Batch normalization follows to
stabilize and accelerate training, along with a LeakyReLU
activation function to introduce nonlinearity. A MaxPooling1D
layer reduces the spatial dimension of the data. The sequence
repeats with another ConvlD layer, LeakyReLU activation,
and MaxPooling1D layer. Dropout layers, with a 50 percent
dropout rate, are interspersed to prevent overfitting. Additional
Convl1D layers and average pooling layers further process the
data, with GlobalAveragePooling1D ultimately reducing each
feature map to a single value. Finally, a Dense layer with a
sigmoid activation function provides the binary classification
output. The model is compiled with the Adam optimizer and
binary cross-entropy loss function, emphasizing accuracy as
a performance metric. This structure efficiently captures and
processes one-dimensional data for classification tasks.

G. Recurrent Neural Network (RNN) Architecture

In this study, Fig. 5(b) illustrates the RNN architecture
with LSTM layers is designed for binary classification tasks,
specifically capturing temporal dependencies in input data.
An LSTM layer with 128 units is the first layer in the
model. using the ReLU activation function and configured
to return sequences, allowing for deeper stacking of LSTM
layers. This is followed by a Batch Normalization layer to
stabilize and speed up training, and a LeakyReL.U activation
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Fig. 5. Model architecture (a) Ex-IDCNN (b) RNN.

function prevents dead neurons by allowing a small gradient
even when inactive. A Dropout layer then randomly sets 20
percent of the input units to zero to prevent overfitting and
improve generalization. The sequence includes another LSTM
layer with 128 units and a ReLU activation, followed by
another Dropout layer. The subsequent Dense layer has 32
units with ReLU activation, followed by Dropout. Finally,
a Dense layer with a single unit and sigmoid activation
outputs the final prediction for binary classification. With
accuracy as a performance parameter, the model is assembled
using the binary cross-entropy loss function and the Adam
optimizer. This architecture, a combination of LSTM layers
and regularization techniques, is robust for capturing complex
patterns in sequential data while mitigating overfitting. [11].

H. Evaluation of the Models

Upon completing model training for both models, we con-
ducted comprehensive evaluations by testing them on separate
test datasets, thus identifying the best-performing model. The
result of the experiment is given in the performance Table I.
The confusion matrices and the Receiver Operating Charac-
teristic (ROC) curves of the Ex-1DCNN and RNN models are
shown in Fig. 6 and Fig. 7, respectively.

III. DISCUSSION

The results presented in Table I represent the performance
of the Extended 1-Dimensional Convolutional Neural Network
(Ex-1DCNN) model as well as the performance of the Recur-
rent Neural Network (RNN) model for classifying Schizophre-
nia Disease using Electroencephalogram (EEG) data. The
reported metrics include accuracy, precision, test loss, and F1
score, which provide a comprehensive view of the model’s
capabilities and limitations. For the RNN model architecture,
the accuracy is 86.44%, while for the Ex-1IDCNNN model
architecture, the accuracy is 64.78%. All other parameters
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Fig. 6. Confusion Matrix for Ex-IDCNN and RNN models.
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Fig. 7. ROC curves for Ex-IDCNN and RNN models.

(Test Loss, F1 score, Confusion Matrix, AUC of ROC curve)
are also better for the RNN model than Ex-1DCNN except
precision. Therefore, for this experiment, the RNN model is
preferable for classifying schizophrenia.

IV. CONCLUSION

In this work, our objective was to creat a deep learning
model for the classification of Schizophrenia (Scz) by analyz-

TABLE I
RESULT OF DIFFERENT MODELS AND PERFORMANCE PARAMETERS
Models Accuracy (%) | Test Loss | Precision | F1 score
RNN 86.44 0.326 0.89 0.874
Ex-1IDCNN 64.78 0.938 0.99 0.527

ing the raw EEG dataset (EDF = European Data Formate). We
used a total of 28 brain EEG data. Our approach involved uti-
lizing an Extended 1-Dimensional Convolutional Neural Net-
work (Ex-1DCNN) and a Recurrent Neural Network (RNN)
for the classification of Schizophrenia and Healthy control. In
addition, we have compared the performances of these two
deep learning models to find which model may contribute
better to detecting Schizophrenia diseases. In this experiment,
the higher accuracy was obtained from the RNN model. The
performance of the Ex-1DCNN model is low compared to
the performance of the RNN model. Hence, the RNN model
architecture can be used as a reliable method for the automated
detection of Schizophrenia diseases.

In essence, This study advances the continuous investigation
of novel techniques for automated and early schizophrenia
detection, ultimately striving to make a positive impact on
the lives of individuals with Schizophrenia by enabling more
timely interventions and personalized treatment strategies.
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