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Abstract— During cognitive and emotional activities, the 
rhythmic, spontaneous impulses of neurons in the brain 
generate electrical potentials. These electrical potentials can be 
detected as brain waves using various instruments. Among those 
instruments, EEG is widely used for emotion recognition. The 
process of EEG-based emotion recognition generally consists of 
several steps: data collection using EEG, preprocessing the data, 
feature extraction, feature dimensionality reduction, and 
classification. With the advancement of information technology, 
these steps have been improved significantly. New approaches 
such as new machine learning and deep learning models are 
being employed in this field. Moreover, through continuous 
research, new theoretical ideas of emotions are being proposed 
for the use of EEG-based emotion recognition. In recent years, 
the field of EEG-based emotion recognition has seen significant 
progress.  This article explores these advancements and gives an 
overview of current trends and progression in EEG-based 
emotion recognition.  
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I. INTRODUCTION

Emotions are central to human cognition and 
behavior. Emotions play major roles in different aspects of 
daily life, including decision-making, problem-
solving, and communication [1], [2]. The emotional state 
of an individual is closely associated with their overall well-
being. Accurately recognizing emotions is crucial in 
various applications, including mental health 
diagnosis, human-computer interaction, and affective 
computing [3], [4], [5]. One of the widely used tools 
for emotion recognition is Electroencephalography 
(EEG). It is popular because of its availability, cost-
effectiveness, portability, and ease of use. Additionally, its 
non-invasive nature makes it an ideal choice for emotion 
recognition tasks [5], [6]. However, the method has several 
limitations, including noise sensitivity, individual and 
session-specific variations in signal patterns, and the 
difficulty of interpreting the high-dimensional data [6]. 
These limitations reduce the tool's effectiveness, 
hinder the generalizability of emotion recognition models, 
and make it challenging to adopt EEG for diverse real-life 
applications. The good news is that recent 
developments in artificial intelligence, especially in 
machine learning and deep learning, 

have shown promise in overcoming many of these limitations. 
This paper explores these advancements and provides a 
comprehensive overview of the latest technical innovations in 
the process of emotion recognition using EEG. Additionally, 
as new theories of emotions are being adopted in this field, the 
current paper also explores these theories. 

II. MODEL OF HUMAN EMOTION

Before detecting something, one needs to have a clear idea 
of what they are looking for. This is where theoretical models 
of emotion become relevant. It should be noted that these 
models are psychological theories of defining, categorizing, 
and measuring emotions. So, here they are mentioned as 
‘theoretical models’. As emotions are subjective experiences, 
theoretical models of emotions are often based on arbitrary 
measures and ideas that can often vary from culture to culture 
or even from person to person. To categorize and represent 
emotions, several theoretical models have been proposed in 
the literature. One of the models known as Ekman’s 
classification of discrete emotions, gained influence as it was 
widely adopted in EEG-based emotion detection studies. 
Ekman determines 6 basic emotions namely anger, fear, 
sadness, joy, surprise, and disgust [7]. Izard, Levenson, 
Panksepp, and Watt also proposed similar theoretical models 
of basic emotions, which mostly overlap with Ekman’s and 
each other’s models but have a few differences [8].  

However, EEG emotion detection studies based on these 
other theoretical models are limited. Several datasets were 
developed to evoke emotions from test subjects, such as SEED 
and DEAP datasets. This was done to standardize the emotion-
evoking stimuli across different studies. Among the two 
datasets, the SEED dataset is focused on the categorical 
classification of emotions  [9]. Some studies tried to integrate 
standardized psychological scales (i.e. Beck Depression 
Inventory) in EEG-based emotion recognition but the 
application was fairly limited [10], [11]. Several 
contemporary approach suggests using dimensional models 
that define emotions on two or three-dimensional planes [6]. 
Russell's circumplex model is a well-known dimensional 
model that uses an arousal scale to express sensations of 
activity and inactivity and a valence scale to indicate positive 
to negative emotions. 



 

 

 
 

 

  

Fig. 1. Russel’s the 2D valence-arousal emotion space [13] 

Emotions are therefore interpreted based on each scale's 
values. Without being restricted to a certain emotion category, 
this kind of dimensional model allows researchers to 
concentrate on emotion recognition tasks [12]. Among the 
datasets for evoking emotions, the DEAP dataset focuses on 
the dimensional approach (valence-arousal) to characterize 
emotions [9]. Despite the presence of various theoretical 
models for emotions; there are disagreements over a general 
consensus [12].  

III.� LEARNING SYSTEMS FOR EMOTION RECOGNITION

The advent of artificial intelligence has revolutionized 
emotion recognition, with machine learning and deep learning 
algorithms advancing EEG-based emotion detection. [14]. 
Typically, after feature extraction, the extracted features are 
fed into the classifier. Several machine learning algorithms 
have been applied as emotion classifiers. AdaBoost from the 
ensemble classifier category, CNN (convolutional neural 
network) from the neural networks category, kNN (k-nearest 
neighbors) from the nearest neighbor classifier category, and 
SVM (support vector machine) from the linear classifier 
category are the most commonly used classifiers [15], [16], 
[17]. After a machine learning model is trained, the results of 
this classification are generally evaluated using performance 
metrics so that various researchers can understand and 
compare the performances of the models. The most commonly 
used performance evaluation metrics are confusion matrix, 
accuracy, error rating, and other metrics derived from the 
confusion matrix, including precision, recall, specificity, 
receiver operating characteristics- area under the curve (ROC-
AUC), and F-measure [6], [15]. 

Deep learning has become an increasingly popular 
approach for analyzing EEG data, often replacing or 
complementing traditional feature extraction methods. One of 
DL's benefits is the ability to employ multimodal systems 
successfully and efficiently. There are two main types of 
emotion recognition systems. - unimodal system and 
multimodal system. To detect emotions, unimodal systems 
only use one source of data, such as speech, facial expressions, 
or physiological signs. But the amount of information is low 
and these systems frequently perform poorly. Unimodal 
algorithms are vulnerable to input data fluctuation and noise. 
So, a multimodal approach was necessary. However, it was 
extremely difficult until the introduction of DL. Using DL 
algorithms, Researchers are now able to extract complex 
patterns and nuanced details from multimodal data using DL 
algorithms. Multimodal emotion recognition (MER) systems 

can combine information from multiple modalities such as 
facial expressions, speech patterns, and physiological signals 
to enhance the accuracy of the emotion recognition process 
[18]. 

IV.  IMPROVEMENT OF RECOGNITION ACCURACY 
Several new approaches and algorithms are being 

employed for the detection of emotion from EEG data for the 
purpose of improving the accuracy of the models. This section 
offers a concise overview of recent approaches and models 
reviewed in the current paper, highlighting their contributions 
to advancing EEG-based emotion recognition. 

A. CATM 

A study introduces the cross-scale attention convolutional 
model (CATM), which incorporates a cross-scale attention 
module, a frequency-space attention mechanism, a feature 
transition framework, a temporal feature extraction 
component, and a depth classification unit. It captures spatial 
features at various scales, prioritizes key channels and 
locations, extracts temporal patterns, and classifies EEG 
signals into emotions. On the DEAP dataset, CATM achieved 
99.70% (valence) and 99.74% (arousal) in binary 
classification, and 97.27% in four-class classification. With 
only five channels, it reached 97.96% (valence), 98.11% 
(arousal), and 92.86% (four-class). The results outperform 
recent methods and demonstrate strong performance even 
with fewer channels [19]. 

B. 4D-CRNN 

Another innovative approach integrates frequency, spatial, 
and temporal information using a four-dimensional 
convolutional recurrent neural network (4D-CRNN). 
Differential entropy features are transformed into 4D 
structures for training, with CNN capturing frequency-spatial 
data and LSTM extracting temporal dependencies. This 
method achieves state-of-the-art accuracy on SEED and 
DEAP datasets under intra-subject splits. The 4D-CRNN 
model achieved an average accuracy of 94.74% on the SEED 
dataset 94.22% for valence classification and 94.58% for 
arousal classification on the DEAP dataset [20]. 

C. SVM, CSP, and Entropy-Energy Features 

High accuracy can be achieved even with previously 
established methods like SVM and CSP by refining the 
pipeline. For example, a study applied CSP to emotion 
recognition to extract features from narrowband EEG waves 
(theta, alpha, beta, gamma) and found that higher frequency 
bands (beta and gamma) were more effective for emotion 
recognition than lower bands like theta and alpha. Using 
short-time entropy and energy for feature capture and SVM 
for classification, the method achieved 96.15% valence and 
96.47% arousal accuracy on the DEAP dataset, and 99.95% 
on the SEED dataset [21]. 

D. CapsNet and LSTM  

Similarly, hybrid deep learning models are making strides in 
multi-channel EEG emotion recognition. For example, 
capsule networks (CapsNet) combined with attention 
mechanisms and LSTM networks improve multi-channel 
EEG emotion recognition by extracting spatial features with 



 

  

   

CapsNet and temporal features with LSTM. Channel-wise 
attention further enhances performance, achieving superior 
results on the DEAP dataset, with accuracies of 97.17%, 
97.34%, and 96.50% for valence, arousal, and dominance, 
respectively. [22].  

E. Graph Neural Networks (GNNs)

Another promising area involves applying graph neural 
networks (GNNs). GNNs are better at handling dynamic, 
variable-sized data. Leveraging the biological topology of 
brain regions, dynamical graph convolutional neural 
networks (DGCNNs) outperform traditional methods like 
SVMs and CNNs, achieving a 95% average accuracy with 
faster training times, thus showing potential for further 
research [23].  

F. Ensemble methods

Furthermore, it has been proposed that novel ensemble 
methods may capture the spatial-temporal characteristics of 
EEG signals. Incorporating spatial-temporal characteristics 
of EEG signals, a novel ensemble approach uses a multi-
class common spatial pattern (MCCSP) for signal processing 
and autoencoders with CNN layers for classification. 
Tested on custom-collected datasets, it achieves 99.44% 
accuracy for classifying positive, negative, and 
neutral emotions, outperforming previous methods and 
suggesting promising applications for brain-computer 
interfaces (BCIs) [24].  

G. CNN and GRU Hybrid Models

Lastly, hybrid models combining CNN and GRU improve 
preprocessing, feature extraction, and classification stages. 
Techniques such as independent component analysis (ICA) 
and discrete wavelet transform (DWT) enhance signal 
quality and feature selection, respectively, leading to 
precise and sensitive emotion classification for 
human-computer interaction systems. The result showed 
CNN-GRU leads with the highest accuracy (78%), 
followed by SVM (70%) and KNN (65%) [25].  The 
methods used to improve recognition accuracy are briefly 
presented in “Table 1”. 

TABLE I. COMPARISON OF DIFFERENT ALGORITHMS 

Method Key Feature(s) Dataset(s) Accuracy 

CATM [19] 
Multi-feature, 
cross-scale 
attention CNN 

DEAP DEAP: 
Valence: 99.70% 
Arousal: 99.74% 

4D-CRNN 
[20] 

CNN (spatial), 
LSTM (temporal) 

SEED 
DEAP 

DEAP: 
Valence:94.22% 
Arousal: 94.58% 
SEED: 94.74%, 

SVM + CSP 
+ Entropy-
Energy 
Features[21] 

Multi-band CSP, 
entropy-energy 
features, SVM 

DEAP, 
SEED 

DEAP: 
Valence:96.15%, 
Arousal: 96.47%;  
SEED: 99.95% 

CapsNet + 
LSTM [22]. 

Spatial (CapsNet), 
temporal (LSTM) 

DEAP Valence: 97.17%, 
Arousal: 97.34%, 

GNNs [23] Dynamical GCNs, 
biological topology 

Custom 95% 

Ensemble 
[24] 

Multi-class CSP, 
autoencoders with 
CNN 

Custom 99.44% 

CNN + GRU 
[25] 

ICA(preprocessing) 
DWT (feature 
selection) 

Custom 78% 

V. ENHANCEMENT BY GENERALIZATION

A. Domain-Invariant Adaptive Graph regularized Label
Propagation (DIAGLP)

The EEG signal patterns for the same emotion vary between 
individuals and even for the same person across sessions, 
limiting the generalizability of emotion recognition models. 
To address this, a study proposes DIAGLP (domain invariant 
adaptive graph regularized label propagation), a method 
designed to adapt models trained on one domain (e.g., a 
specific person's data) to work on another domain (e.g., 
different individuals or sessions). Unlike traditional methods 
that handle feature alignment and label adjustment 
separately, DIAGLP integrates both tasks into a single 
system, using soft labels for flexible predictions and an 
adaptive probability graph to propagate accurate emotion 
labels. This unified framework improves adaptability to new 
people or situations, enhancing the real-world applicability of 
emotion recognition systems [26]. 

B. AIGC with Pre-trained Transformers

Artificial intelligence for generative content (AIGC) is 
enhancing EEG data augmentation and model performance. 
A novel workflow using generative pre-trained transformers 
(EEGPT) generates time-invariant components, while a 
contrastive learning strategy ensures subject-invariant data 
alignment. These methods improve deep learning 
generalization across datasets [27].“Fig 2” provides A brief 
overview of the theories, datasets, the methods used for 
increasing accuracy, and the methods used for improving 
generalization. 

VI. DISCUSSION

This article provides a comprehensive overview of recent 
progress in EEG-based emotion recognition summarizing 
key publications to highlight progress in the field. EEG is 
widely used in the fields of neuroscience, computer science, 
health, and behavioral science. However, the presence of 
noise, high dimensional data complexity, and individual 
variations remains a challenge. For EEG-based emotion 
recognition, at present, there is no universally accepted theory 
to classify human emotion. but dimensional models, such as 
valence-arousal, have gained traction in recent studies. 
Recently, the integration of machine learning and deep 
learning has greatly improved the process. 

Fig. 2. Diagram illustrating the models, datasets, and methods 



 

 

 
 

  

 

Some machine learning algorithms such as AdaBoost, CNN 
and SVM, and deep learning techniques like 4D-CRNN and 
hybrid models, such as CapsNet with LSTM, have been used 
with great accuracy in emotion classification with some of the 
models achieving accuracy over 99%. Accuracy is also 
enhanced by using ensemble methods and graph neural 
networks. MER systems, which combine EEG with other 
modalities such as facial expressions and speech have gained 
prominence due to their ability to handle complex patterns 
and improve system robustness. New methods for improving 
generalizations of the models such as DIAGLP, and AIGC 
have been developed to increase generalizations. These 
advancements make EEG-based emotion recognition more 
adaptable and effective for real-world applications. This 
research recommends future studies to focus on developing 
standardized, universally accepted theories of emotion. 
Researchers can focus on biological parameters, such as 
neurotransmitter and hormone secretions to define affective 
states rather than depending on subjective descriptions. 
Future studies can also focus on following newer approaches 
such as developing self-reflecting models like DeepSeek’s 
R1, but tailored for emotion recognition using EEG. 

VII.� CONCLUSION

To conclude, the rapid progress in EEG-based emotion 
recognition is being fueled by new approaches, algorithms, 
and models that are improving accuracy and adaptability. 
These advancements are opening the door for the 
incorporation of this technology into real-life applications 
such as mental disorder detection, assessment of mental 
fitness, etc. As research continues to explore the frontiers of 
EEG-based emotion recognition, it is destined to play a 
pivotal role in diverse areas, from healthcare and human-
computer interaction to adaptive technologies and beyond. 
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