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Abstract— Poxviruses are very infectious and can lead to 
skin blisters as well as other health problems which necessitates 
early detection to ensure effective treatment. Since the skin 
lesions caused by different varieties of pox may initially seem 
identical, it becomes difficult to reliably identify the type of pox. 
This paper introduces a novel CNN-LSTM hybrid approach for 
classifying and detecting five types of skin diseases including 
monkeypox, cowpox, chickenpox, measles and hand, foot, and 
mouth disease. The suggested technique combines CNN's 
feature extraction capabilities with the sequential learning 
process of Long Short-Term Memory (LSTM) networks. The 
model has an overall accuracy of 97% and an AUC of 99.7%. 
Grad-CAM analysis demonstrates the system's effectiveness by 
producing heatmaps that illustrate sections of the picture that 
influence the projected class score, although the overall 
performance is slightly reduced for chickenpox. The findings of 
this study confirmed the proposed system's superiority over pre-
trained models, highlighting its potential for rapid and accurate 
skin condition identification. 
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I. INTRODUCTION

Skin diseases caused by poxviruses and related infections 
are highly contagious and pose substantial public health 
concerns. The pox viruses are extremely contagious given that 
they can spread through biofluid, interaction with 
contaminated objects, intimate contact with sick people, and 
consumption of food or drinking water that has been 
contaminated [1]. These diseases, including monkeypox, 
cowpox, chickenpox, measles, and hand, foot, and mouth 
disease (HFMD), manifest as skin lesions that often appear 
visually similar in their early stages. Despite their distinct viral 
origins, these conditions share overlapping symptoms, making 
accurate diagnosis challenging. Early and precise detection is 
paramount to prevent outbreaks, administer appropriate 
treatment, and avoid misdiagnosis which can lead to improper 
vaccination or medication. 

Chickenpox, cowpox, monkeypox, and smallpox are 
classified under distinct virus genera. Smallpox and 
monkeypox virus belongs to the same viruse group [2]. 
Cowpox, which is initially very uncommon in humans, mostly 
transmitted through mice or domestic cats [2]. Monkeypox 
symptoms are nearly identical to those of chickenpox as they 
have similar kind of skin lesions in the initial phases, which 
makes clinical diagnosis extremely challenging [3]. Measles, 
a viral illness that sometimes becomes more severe than pox, 
while HFMD is another very common disorder that similarly 
causes blister-like rashes on different areas of the skin [4]. 
Since the aforementioned conditions might have very similar 

physical manifestations in their early stages, it is imperative to 
provide a quick and precise method for automatically 
detecting and classifying skin lesions in individuals with these 
conditions. 

Traditional diagnostic methods rely on clinical 
examination and laboratory testing, which can be time-
consuming, costly, and necessitate specialized expertise. 
Recent advancements in artificial intelligence (AI) and deep 
learning have demonstrated substantial potential in 
automating disease detection through medical imaging. 
Convolutional Neural Networks (CNNs) [5] have been widely 
employed for feature extraction from medical images, while 
Long Short-Term Memory (LSTM) [6] networks are effective 
in learning sequential dependencies. However, existing AI-
based approaches either concentrate solely on CNNs or 
employ pre-trained models, which may lack the capacity to 
discern both spatial and temporal relationships in skin lesion 
images. 

To address these challenges, this paper proposes a hybrid 
CNN-LSTM framework for the automated classification of 
five skin diseases: monkeypox, chickenpox, HFMD, cowpox, 
and measles. The CNN component extracts spatial features 
from images, while the LSTM component captures sequential 
dependencies in the extracted features, augmenting the 
model’s capability to differentiate between similar-looking 
skin conditions. This approach ensures enhanced accuracy and 
robustness compared to conventional CNN-based models. 

The major contributions of this research article are: 
 Development of a hybrid CNN-LSTM model
 Detection and classification of five skin diseases

using image data
 A detailed experimental analysis has been provided

with Grad-CAM Feature extraction analysis to
measure the performance of the proposed system

 A detailed comparison between pre-trained CNN and
the proposed model has been done to find the novelty
of the proposed work.

II. RELATED WORKS

Several research has been carried out previously based on 
monkeypox and chickenpox disease prediction using machine 
learning methods. 

K. Kiran et al. [7] implemented an optimized artificial
neural network (ANN) model by taking statistical features for 
detecting monkeypox. The limitation of this work is the 
model's complexity might make it challenging to comprehend 
decision-making, which is essential in medical applications. 
In another work [8], the ResNet50v2 model was used to create 
a deep learning-based method for classifying mpox lesions in 



 

addition to five other skin disorders. The model found it 
difficult to distinguish between similar skin disorders, such as 
chickenpox and monkeypox and the dataset that was used 
could fail to cover the heterogeneity of skin lesions. 
Leveraging a time series monkeypox dataset, an ANN model 
was developed in [9] and compared to LSTM and GRU 
algorithms to forecast a monkeypox pandemic in five specific 
nations. The geographic constraint might limit the impact of 
the research to other areas   K. Arora et al. [10] demonstrated 
the potential of implementing a deep learning (DL) framework 
to accurately classify chickenpox and monkeypox. Using the 
Monkeypox Image Dataset, a CNN model was trained using 
the MobileNetV2 architecture. An image-based deep CNN 
has been developed in [11] for the recognition of the 
distinctive skin lesions brought on by the monkeypox virus. 
One limitation of this work is, the MPXV dataset utilized in 
this study featured a high proportion of persons with dark skin, 
which could lead to inaccurate results for other skin colors. In 
another study [12] authors investigated 13 pre-trained deep 
learning (DL) models in order to detect the Monkeypox virus 
and assessed the performance of the models to predict the 
disease. Two significant drawbacks of this work are that they 
only employed pre-trained DL models and the dataset size is 
quite small. 

A. Akula et al. [13] examined a dataset that included four 
classes: normal skin pictures, chickenpox, measles, and mpox 
and several pre-trained models, including ResNet50V2, 
Xception, DensNet121, MobileNetV2, to determine the most 
suited for picture classification. These pre-trained models may 
sometimes misclassify acne as mpox. Chickenpox and 
Monkeypox disease were classified in another research work 
[3] where a four-layer, two-dimensional convolutional neural 
network (CNN) was implemented. However, the developed 
model may not work effectively for other datasets. Another 
study [14] outlines a novel approach to accurately and quickly 
diagnosing monkeypox using four pre-trained models and the 
Adam optimization strategy. S. Savaş [15] generated 
ensemble models For distinguishing visually identical 
diseases like measles, Mpox, and chickenpox after testing 71 
models from pre-trained libraries and filtering out models with 
unsatisfactory test results. . In another work [16] a model 
termed PoxNet22 was proposed to categorize monkeypox 
more precisely than other pox. However, further 
investigations is required to verify its efficacy and durability 
in identifying monkeypox. 

III. METHODOLOGY 

This section depicts the overall approach for classifying 
five skin diseases: monkeypox, cowpox, chickenpox, HFMD, 
and measles. We explored adding a fifth class for skin that is 
disease-free. The loaded data went through a pre-processing 
pipeline before being separated into training and validation 
sets. Then, the suggested CNN+LSTM model was trained and 
verified. After training, the model was assessed by generating 
test data from the dataset and measuring accuracy, precision, 
f1-score, and AUC-ROC. In addition, feature explanations 
were performed using Grad-CAM analysis. 

A. Dataset 

The dataset with images of all five diseases is being 
considered in this work. To improve the classification process, 
this dataset includes various data augmentation techniques 
such as rotation, translation, reflection, shear, hue, saturation, 

contrast, brightness jitter, noise, and scaling on the training 
data. This generates around 7500 images in total. This large 
amount of image data was split into two parts: 80% for model 
training and 20% for validation. 

B. CNN 

Convolutional Neural Networks (CNNs) are multilayer 
perceptron models capable of extracting and learning 
complicated features from training data. CNNs excel at image 
classification, object identification, medical image processing, 
and facial recognition [17, 18]. The main concept is to take 
local features from upper levels and transfer them to lower 
layers to create more complex features. 

C. LSTM 

Long Short-Term Memory (LSTM) is a more advanced 
recurrent neural network that uses memory cells and gates to 
detect temporal connections in sequential input. It 
successfully manages long-term dependencies and addresses 
the vanishing gradient issue [19]. LSTMs are frequently used 
for time-series prediction, voice recognition, and picture 
classification. 

D. Proposed CNN+LSTM Network 

In this study, a combined CNN-LSTM method was 
developed to detect and classify the five types of skin diseases 
stated above. Figure 1 illustrates the proposed CNN+LSTM 
architecture. In this combined architecture, CNN is used to 
extract complex features from images and LSTM is used as a 
classifier. 

 
Fig. 1. CNN-LSTM Model Architecture 

The proposed hybrid model has 20 layers, including 12 
convolutional, 5 pooling, LSTM, fully connected, and output 
layers with softmax. Each of the first three convolutional 
blocks is composed of two 2D CNNs and a pooling layer. The 



two remaining convolutional blocks each include three 2D 
CNNs and a pooling layer. A convolutional layer with 3 × 3 
kernel and ReLU activation retrieves complicated features, 
while a 2 × 2 max-pooling layer decreases picture size. The 
LSTM layer extracts time-related information. The output 
form of the convolutional block is (None, 7, 7, 512), which is 
then reshaped to (None, 49, 512) for the LSTM layer. Finally, 
a fully connected layer divides the images of the diseases 
(Monkeypox, Chickenpox, Cowpox, Measles, HFMD, and 
Healthy) into six groups based on time characteristics. 

E. Model Evaluation Metrics

To assess the model's performance, accuracy, precision,
recall, F1-score, and AUC (Area under the Curve) are 
utilized. These metrics provide an overview of the model's 
prediction skills across all classes. ROC curves for each class 
was generated and presented to demonstrate the trade-off 
between true and false positive rates. The macro-averaged 
AUC describes the entire model performance. Individual 
AUC values for each class are included in ROC curves, 
together with a baseline random guess curve, to indicate per-
class performance. This comprehensive examination 
demonstrates both overall accuracy and particular class-
specific performance. 

IV. RESULTS 

The training dataset was split into 80% for training and 20% 
for validation. Table I shows the parameters used for model 
training.  

TABLE I. MODEL TRAINING PARAMETERS 

Learning Rate 0.00001 
Image Dimensions 224x224 

Batch Size 32 
Epochs 50 

Optimizer Adam 

A. Result Analysis

“Fig. 2” shows the CNN-LSTM classifier’s performance,
including training and validation accuracy. The model's 
capacity to learn from the data was demonstrated by the 
training and validation accuracies, which showed stable 
accuracy after steady increases during the training phase. At 
epoch 36, the training accuracy is 99.9% and the validation 
accuracy is 95.7%. 

Fig. 2: Evaluation of CNN-LSTM based System’s Training & Validation 
Phase 

The model has an overall accuracy of 97%. Figure 3 
summarizes and graphically displays the total accuracy, 
precision, and F1-score of the developed CNN-LSTM 
architecture for each of the five diseases and healthy skin. 
Furthermore, the ROC curves between TPR and FPR 
compare overall performance, which has been depicted in 
Fig. 4. The AUC value of 99.7% indicates good performance. 
CNN-LSTM architecture achieved a perfect score (1.0) for 
all classes except Chickenpox (0.98). 

Fig. 3: Performance of the Proposed Network

Fig. 4: ROC Analysis of Proposed System 

Finally, Grad-CAM analysis has been done. It is a heat 
map that has been used to visualize thr experimental results. 
It highlights important regions in an image for prediction 
after passing through the final layer. Fig. 5 shows the heat 
map for five skin conditions in CNN-LSTM architecture. 

The Grad-CAM visualizations show effective feature 
extraction in Cowpox, Monkeypox, Measles, and HFMD 
images, but not in Chickenpox. This aligns with the AUC-
ROC analysis, where Chickenpox has a lower AUC. The 
model’s attention is less precise for Chickenpox, indicating 
reduced performance. 

B. Comparison with Pre-trained Models

To evaluate the system’s novelty, nine pre-trained CNN
models were implemented on the classification dataset. The 
parameters were kept identical to those of the proposed CNN-
LSTM model for fairness. The proposed CNN-LSTM 
architecture outperformed the CNN-based pre-trained models 
with the highest test accuracy. The test accuracy results for 
different models have been depicted in Table II.  



TABLE II .       ACCURACY COMPARISON BETWEEN PRETRAINED 

AND PROPOSED MODELS 
Model Name Accuracy (%) 

MobileNet 94 
DenseNet121 96 
DenseNet169 96 

VGG16 67 
VGG19 95 

InceptronV3 95 
Xception 94 
ResNet50 95 

ResNet152 95 
Proposed Model 97 

Fig. 5: Original Image vs Grad-CAM Visualization 

C. Comparison with Previous Works

Table III presents a comparison of the proposed approach
with earlier research. It was clear from the comparison table 
that the developed CNN+LSTM setup we created performed 
better overall and had higher predicted accuracy. 

TABLE III.           COMPARISON WITH PREVIOS STUDIES 

Ref. Disease Detected 
Accuracy 

(%) 
Precision 

(%) 
[5] Mpox 87.13 85.74 

[9] Mpox 89.8 - 
[13] Mpox, Chickenpox, Measles 97.5 - 

[10] Mpox 87.13 85.44 

[6] 
Mpox, Chickenpox, Measles, 

HFMD 
99.3 99.34 

[20] Mpox 96.56 - 

Proposed 
study 

Mpox, cowpox, chickenpox, 
HFMD, and measles 

97 97 

V. CONCLUSION

The proposed CNN-LSTM hybrid model effectively 
classifies five distinct skin diseases—measles, cowpox, 
chickenpox, monkeypox, and hand, foot, and mouth 
disease—using advanced feature extraction and time-series 
analysis. It achieves high accuracy, precision, F1-score, and 
AUC-ROC of 97%, 97%, 98%, and 99.7%, respectively. The 
model’s interpretability is enhanced by Grad-CAM analysis. 
It has outperformed some popular pretrained image 
classification models including ResNet, VGG, DenseNet, 
MobileNet. However, the dataset’s limited size and diversity 
may restrict generalizability, and the model lacks clinical 
validation. Future research should expand the dataset to cover 
diverse demographics and clinical scenarios, enhancing 
robustness and generalizability and collaboration with 
medical professionals will ensure clinical reliability and real-
world validation. 
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