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Abstract—Steady-state visual evoked potential (SSVEP) based
brain computer interfaces (BCIs) are promising technique for
real time communication and control. Utilizing transfer learning
technique, this investigation introduces a novel classification
method that incorporates mask encoding combination (MEC)
data augmentation and convolutional neural networks (CNNs).
The method’s superior classification performance is achieved by
processing harmonics, channels, and temporal sub-bands, which
enhances the robustness of multi-channel EEG signal analysis. In
a 1s time window, the approach obtains a maximal accuracy of
94.69% and a peak information transfer rate (ITR) of 193.14 bits
min~! when evaluated on a benchmark dataset of 35 subjects
and 40 characters. These findings surpass those of conventional
methodologies, emphasizing the potential of integrating data
augmentation and transfer learning to accelerate the development
of SSVEP-based BCls.

Index Terms—Steady-state visual evoked potential (SSVEP),
Brain-computer interface (BCI), Convolutional neural network
(CNN), Mask encoding combination (MEC) data augmentation.

I. INTRODUCTION

A brain-computer interface (BCI) establishes communica-
tion between the human brain and an external device, directing
specific activities without relying on peripheral nerve and mus-
cle actions. This technology involves identifying brain activity
through neurophysiological signals, creating corresponding
commands for interaction with external devices. This direct
communication pathway enhances control over the connected
device [1]. The Electroencephalogram (EEG) is a widely used
method for capturing brain activity in BCI implementations,
known for its noninvasiveness and high time resolution [2].
Numerous methods have been devised to recognize the fre-
quency of SSVEP, with the accuracy of frequency recognition
algorithms being crucial and challenging in SSVEP-based BCI
development. Recently, deep learning-based approaches have
emerged as powerful alternatives, capable of automatically
extracting features from raw EEG data without the need for
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manually designed feature engineering. This work is organized
by first introducing EEG signals and BCls, then concentrating
on the difficulties in recognizing SSVEP frequencies. Next, a
full description of the suggested deep learning model and EEG
mask encoding (EEG-ME) for data augmentation is provided.
In order to show how well the method works to improve
classification performance, the results are finally assessed.

II. PROBLEM STATEMENT

SSVEP-based BClIs still face significant challenges in accu-
rately identifying targets because of the inherent variability in
electroencephalography (EEG) signals and the shortcomings
of conventional manually designed feature-based techniques.
Although deep learning techniques provide automated feature
extraction, they are not sufficiently strong to handle a variety of
EEG patterns. In order to increase classification accuracy and
robustness in SSVEP-based BCIs for practical applications,
this study suggests a unique transfer learning architecture that
makes use of CNNs and EEG Mask Encoding (EEG-ME) for
data augmentation.

III. RELATED WORKS

The creation of brain-computer interfaces, or BCIs, in recent
decades has made it possible for the human brain to commu-
nicate directly with external devices via neurophysiological
signals, obviating the requirement for actions from the muscles
and peripheral nerves [3]. The noninvasive nature and afford-
ability of EEG-based BCIs have made them popular in neural
engineering, neuroscience, and clinical rehabilitation. They
hold great promise for people with severe motor disabilities,
including those suffering from spinal cord injuries, locked-in
syndrome, and comas [4].

Due to its greater ITR, signal-to-noise ratio (SNR), and
low user training needs, the SSVEP-based BCI has gained
attention [5]. Conventional techniques for classifying SSVEPs



have been widely employed, such as power spectrum density
analysis (PSDA) and canonical correlation analysis (CCA) [1],
correlated component analysis (CORRCA) [6]. Nevertheless,
it has been demonstrated that using individual-specific data can
greatly enhance performance, which current approaches do not
achieve. By simultaneously learning temporal and spatial EEG
characteristics, deep learning algorithms have recently been
used to overcome these restrictions and improve classification
accuracy [7]. In practical applications, techniques such as
CNNs and transfer-related component analysis (TransRCA)
have shown enhanced performance, resolving problems such
inter-subject variability and lowering the requirement for large
amounts of training data [8], [9]. Further advancements that
have showed promise in enhancing SSVEP-based BCI perfor-
mance include EEG-ME for data augmentation [10].

IV. DATASET AND PREPROCESSING

A. Data-Set Description

The Benchmark SSVEP Dataset, which was developed by the
Tsinghua group and is publicly available, was employed in this
experiment. It comprises EEG recordings from 35 participants
(18 males, 17 females, mean age: 22 years), eight of whom
had prior exposure with SSVEP-based BCIs. The experiment
consisted of the presentation of 40 visual stimuli that flickered
at frequencies ranging from 8 Hz to 15.8 Hz, with intervals of
0.2 Hz. Each participant completed six sessions of 40 trials.
A 0.5s visual cue was followed by Ss of simultaneous stimulus
flickering and a 0.5s vacant screen in each trial, which lasted
6 s. Participants were able to maintain their concentration by
observing a red triangle situated beneath the target stimulus.

B. Data Preprocessing

The continuous EEG data were segmented into 6-second
epochs, which captured 0.5 seconds of pre-stimulus and 5.5
seconds of post-stimulus activity. The downsampling of these
segments to 250 Hz resulted in 1500 time values per trial. The
data of each subject was stored in a distinct file (e.g., SO1.mat,
S02.mat). This file contained a 4-dimensional matrix that was
organized by the electrode index (64 channels), time points
(1500 time points per trial), target stimuli (40 stimuli), and
block index (6 blocks/trials). In order to guarantee compre-
hensive data organization for subsequent analysis, electrode
positions and information on stimulus frequencies and phases
were recorded in distinct files.

C. Data Augmentation

Deep learning (DL)-based methods for EEG classification
often struggle with limited data availability in public datasets,
leading to overfitting and reduced performance. To overcome
this, data augmentation is a useful approach. This study intro-
duces a technique called MEC to enhance DL-based SSVEP
classification. MEC involves two main steps: mask encoding
and average combination.

Mask Encoding: Mask Encoding is a data augmentation
technique used to enhance the robustness of deep learning
models by introducing variability in EEG training data.In
the following figure X-axis represents the time(t) and Y-axis
represents the amplitude(A).
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Figure 1. Mask Encoding for One Electrode Channel Data of a Sample

« EEG Data Representation: The EEG signal is represented
as a matrix:
X eR”

where T is the number of time steps (data points).

o Mask Ratio(r,,,): The fraction of the signal to be masked,
with r,,, € [0, 1], where (r,,) is the mask ratio.

o Length of Mask Window (d,,):
dy, 1s the length of the mask window, defined as:
dm =T X 1

(1

o Starting Point of Mask (r;): The starting point of the
masked segment is randomly selected as:

rs €0, —d,,]

o Masked Data (Xpaskea(t)):

0,  ifr.<t<r+d,,
Xmasked (f) = ° ’ "

X(#), @

otherwise.

Average Combination: After mask encoding, 4 masked
trials are generated. In the average combination step, 11 new
trials are created by averaging different combinations of these
four trials. This increases data variability and improves the
model’s robustness.

TABLE I
AVERAGE COMBINATIONS OF MASKED TRIALS
Trial | Combination Description

1 (1, 2) Average of Masked Trials 1 and 2
2 (1, 3) Average of Masked Trials 1 and 3
3 (1, 4) Average of Masked Trials 1 and 4
4 2, 3) Average of Masked Trials 2 and 3
5 2,4 Average of Masked Trials 2 and 4
6 3, 4) Average of Masked Trials 3 and 4
7 1,2, 3) Average of Masked Trials 1, 2, and 3
8 (1,2, 4) Average of Masked Trials 1, 2, and 4
9 (1,3, 4) Average of Masked Trials 1, 3, and 4
10 2,3, 4) Average of Masked Trials 2, 3, and 4
11 (1,2,3,4) Average of Masked Trials 1, 2, 3, and 4

V. METHODOLOGY

For better frequency recognition, the suggested methodol-
ogy for the SSVEP-based BCI system makes use of CNNs
and transfer learning. The weights of a broad model that has
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Figure 2. Block Diagram of Proposed Method

been trained on data from every subject are then transferred
to subject-specific models for fine-tuning. This individualized
method addresses inter-subject variability, improving accuracy
and ITR. The robustness and generalization of the model are
further strengthened by the application of data augmentation
techniques.

A. CNNs for EEG Classification

CNNss are effective in EEG classification by learning spatial
and temporal features from EEG data. The input is represented
as a 3D tensor X € REXPXS where C is the number of
channels, D is the number of time points, and S is the number
of frequency bands. The convolutional layers extract features
using filters, with the output feature map calculated as:

fu—1fw-1

Z Z Xz—i—m J+n T

m=0 n=0
ReLU activation ReLU(z) = max(0, ) introduces non-
linearity, and pooling layers reduce the spatial dimensions with
max pooling P =

Winn +b 3)

T Frmitn @

Dropout is applied to prevent overfitting, where the Hadamard
product is used to apply the dropout operation, resulting in the

final dropout output Zgop = Z © D and D is a binary mask.
The data is then passed through fully connected layers, with
outputs computed as:

Yi = HJ;-T . f + bz (5)
The output layer uses softmax activation to calculate prob-
abilities: ply = i|z) = ; - 6)
Zj:l ey
The model is trained using the categorical cross-entropy
loss:
— > wilog(p(y = i) @)

Optimization is done using Adam optimizer algorithm. Once
trained, the model predicts the class

y = argmaxp(y = ilz) (®)
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Figure 3. Proposed CNN Architecture

B. Proposed Frequency Recognition Method

This section outlines the methodology used for recognizing
SSVEPs frequencies from EEG signals. The process consists
of the following key stages, as illustrated in Figure-2:

o Data Preprocessing: Cleaning EEG signals and select

relevant channels/time windows for high-quality input.

o Data Partitioning: Split the dataset into training, valida-
tion, and test sets.

o Data Augmentation: Apply mask-encoding to diversify
training data and improve model generalization.

o Frequency Band Decomposition: Isolate EEG frequency
bands for feature extraction.

e Model Training and Transfer Learning: Train a general
CNN model on data from all subjects. Transfer learned
weights to subject-specific models for fine-tuning.

o Performance Evaluation: Compute classification accuracy
for all subjects and average the results to measure overall
performance.

VI. RESULTS AND PERFORMANCE ANALYSIS

With an emphasis on two important metrics mean accuracy
and ITR, this study contrasts the suggested method with a
number of cutting-edge techniques for SSVEP-based BCls.
When assessing the practical usability of BCIs, several pa-
rameters are crucial.



A. Experimental Results

TABLE 11
EXPERIMENTAL RESULTS WITH TEST ACCURACY AND INFORMATION
TRANSFER RATE (ITR) BITS MIN— 1 (15)

Experiment Accuracy (%) | ITR (bits min~T)
Experiment 1 (9 EEG channels) 93.23 188.38
Experiment 2 (10 EEG channels with data aug.) 94.69 193.14

This improvement is attributed to the use of additional
channels and data augmentation techniques, which enhanced
the model’s robustness to noise and variability, and its gener-
alization across subjects.
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Figure 4. CNN Accuracy Graph

B. Comparison with Other Methods

TABLE III
COMPARISON OF ACCURACY AND ITR FOR DIFFERENT
METHODS AT 1S TIME WINDOW

Method (Reference) Year | Accuracy (%) | ITR (bits min~T)
SSVEPformer [9] 2023 83.19 157.65
3DCNN-TL [8] 2024 89.35 173.02
ASS-IISCCA [11] 2023 93.00 175.00
Conv-CA [7] 2020 93.88 190.23
Proposed Method (with 9 channels) - 93.23 188.38
Proposed Method (10 channels with data aug.) - 94.69 193.14

SSVEPformer [9] accuracy was 83.19%, and the ITR was
157.65 bits min—'. Transformer models, while effective for
certain applications, require large datasets and computational
resources, limiting their real-time applicability in BCIs. An-
other method 3DCNN-TL [8] accuracy found 89.35% and
ITR was 173.02 bits min~!. This model struggles with
generalization due to dataset variations. ASS-IISCCA [11]
accuracy was 93.00% and ITR found 175.00 bits min—!.
While effective, ASS-IISCCA requires a significant amount
of labeled data from each subject. Last one is Conv-CA [7]
with accuracy was 93.88% and ITR was 190.23 bits min—!.
While comparable to the proposed method in performance,
Conv-CA is computationally expensive due to its use of
canonical correlation analysis (CCA). The proposed method
uses transfer learning, convolutional neural networks, and data
augmentation to increase efficiency. For a Is time interval, it

obtains 94.69% classification accuracy and an ITR of 193.14

bits min—!.

VII. CONCLUSION

In this research, important issues have been addressed in
SSVEP-based BCIs, with an emphasis on using deep learning
to increase classification accuracy and information transfer
rate (ITR). This method greatly improved performance on a
variety of EEG signals using transfer learning to customize
a general model to each person. The resilience of the model
improved through data augmentation, particularly for shorter
signals that are essential in real-time applications. Even with
these developments, there are still certain limitations. Although
transfer learning and data augmentation work well, they could
be improved by investigating more sophisticated deep learning
strategies like transformer-based models or attention processes.
Furthermore, using advanced augmentation techniques like
generative adversarial networks (GANs), could enhance gen-
eralization even with sparse data. To increase the applicability
of the method, future research should look at cross-dataset and
cross-task transfer as well. It will be essential to validate this
model in actual BCI systems in order to evaluate its applica-
bility and efficacy. All things considered, this work provides
a scalable approach for effective, adaptive BCI systems that
successfully handles data limitations and variability.
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